918 resultados para Tissue engineering scaffolds
Resumo:
Disease, injury, and age problems compromise human quality of life and continuously motivate the search for new and more efficacious therapeutic approaches. The field of Tissue Regeneration and Engineering has greatly evolved over the last years, mainly due to the combination of the important advances verified in Biomaterials Science and Engineering with those of Cell and Molecular Biology. In particular, a new and promising area arose – Nanomedicine – that takes advantage of the extremely small size and especial chemical and physical properties of Nanomaterials, offering powerful tools for health improvement. Research on Stem Cells, the self-renewing progenitors of body tissues, is also challenging to the medical and scientific communities, being expectable the appearance of new and exciting stem cell-based therapies in the next years. The control of cell behavior (namely, of cell proliferation and differentiation) is of key importance in devising strategies for Tissue Regeneration and Engineering. Cytokines, growth factors, transcription factors and other signaling molecules, most of them proteins, have been identified and found to regulate and support tissue development and regeneration. However, the application of these molecules in long-term regenerative processes requires their continuous presence at high concentrations as they usually present short half-lives at physiological conditions and may be rapidly cleared from the body. Alternatively, genes encoding such proteins can be introduced inside cells and be expressed using cell’s machinery, allowing an extended and more sustained production of the protein of interest (gene therapy). Genetic engineering of stem cells is particularly attractive because of their self-renewal capability and differentiation potential. For Tissue Regeneration and Engineering purposes, the patient’s own stem cells can be genetically engineered in vitro and, after, introduced in the body (with or without a scaffold) where they will not only modulate the behavior of native cells (stem cell-mediated gene therapy), but also directly participate in tissue repair. Cells can be genetically engineered using viral and non-viral systems. Viruses, as a result of millions of years of evolution, are very effective for the delivery of genes in several types of cells, including cells from primary sources. However, the risks associated with their use (like infection and immunogenic reactions) are driving the search for non-viral systems that will efficiently deliver genetic material into cells. Among them, chemical methods that are promising and being investigated use cationic molecules as carriers for DNA. In this case, gene delivery and gene expression level remain relatively low when primary cells are used. The main goal of this thesis was to develop and assess the in vitro potential of polyamidoamine (PAMAM) dendrimers based carriers to deliver genes to mesenchymal stem cells (MSCs). PAMAM dendrimers are monodispersive, hyperbranched and nanospherical molecules presenting unique characteristics that make them very attractive vehicles for both drug and gene delivery. Although they have been explored for gene delivery in a wide range of cell lines, the interaction and the usefulness of these molecules in the delivery of genes to MSCs remains a field to be explored. Adult MSCs were chosen for the studies due to their potential biomedical applications (they are considered multipotent cells) and because they present several advantages over embryonic stem cells, such as easy accessibility and the inexistence of ethical restrictions to their use. This thesis is divided in 5 interconnected chapters. Chapter I provides an overview of the current literature concerning the various non-viral systems investigated for gene delivery in MSCs. Attention is devoted to physical methods, as well as to chemical methods that make use of polymers (natural and synthetic), liposomes, and inorganic nanoparticles as gene delivery vectors. Also, it summarizes the current applications of genetically engineered mesenchymal stem cells using non-viral systems in regenerative medicine, with special focus on bone tissue regeneration. In Chapter II, the potential of native PAMAM dendrimers with amine termini to transfect MSCs is evaluated. The level of transfection achieved with the dendrimers is, in a first step, studied using a plasmid DNA (pDNA) encoding for the β-galactosidase reporter gene. The effect of dendrimer’s generation, cell passage number, and N:P ratio (where N= number of primary amines in the dendrimer; P= number of phosphate groups in the pDNA backbone) on the level of transfection is evaluated, being the values always very low. In a second step, a pDNA encoding for bone morphogenetic protein-2, a protein that is known for its role in MSCs proliferation and differentiation, is used. The BMP-2 content produced by transfected cells is evaluated by an ELISA assay and its effect on the osteogenic markers is analyzed through several classical assays including alkaline phosphatase activity (an early marker of osteogenesis), osteocalcin production, calcium deposition and mineralized nodules formation (late osteogenesis markers). Results show that a low transfection level is enough to induce in vitro osteogenic differentiation in MSCs. Next, from Chapter III to Chapter V, studies are shown where several strategies are adopted to change the interaction of PAMAM dendrimers with MSCs cell membrane and, as a consequence, to enhance the levels of gene delivery. In Chapter III, generations 5 and 6 of PAMAM dendrimers are surface functionalized with arginine-glycine-aspartic acid (RGD) containing peptides – experiments with dendrimers conjugated to 4, 8 and 16 RGD units were performed. The underlying concept is that by including the RGD integrin-binding motif in the design of the vectors and by forming RGD clusters, the level of transfection will increase as MSCs highly express integrins at their surface. Results show that cellular uptake of functionalized dendrimers and gene expression is enhanced in comparison with the native dendrimers. Furthermore, gene expression is dependent on both the electrostatic interaction established between the dendrimer moiety and the cell surface and the nanocluster RGD density. In Chapter IV, a new family of gene delivery vectors is synthesized consisting of a PAMAM dendrimer (generation 5) core randomly linked at the periphery to alkyl hydrophobic chains that vary in length and number. Herein, the idea is to take advantage of both the cationic nature of the dendrimer and the capacity of lipids to interact with biological membranes. These new vectors show a remarkable capacity for internalizing pDNA, being this effect positively correlated with the –CH2– content present in the hydrophobic corona. Gene expression is also greatly enhanced using the new vectors but, in this case, the higher efficiency is shown by the vectors containing the smallest hydrophobic chains. Finally, chapter V reports the synthesis, characterization and evaluation of novel gene delivery vectors based on PAMAM dendrimers (generation 5) conjugated to peptides with high affinity for MSCs membrane binding - for comparison, experiments are also done with a peptide with low affinity binding properties. These systems present low cytotoxicity and transfection efficiencies superior to those of native dendrimers and partially degraded dendrimers (Superfect®, a commercial product). Furthermore, with this biomimetic approach, the process of gene delivery is shown to be cell surface receptor-mediated. Overall, results show the potential of PAMAM dendrimers to be used, as such or modified, in Tissue Regeneration and Engineering. To our knowledge, this is the first time that PAMAM dendrimers are studied as gene delivery vehicles in this context and using, as target, a cell type with clinical relevancy. It is shown that the cationic nature of PAMAM dendrimers with amine termini can be synergistically combined with surface engineering approaches, which will ultimately result in suitable interactions with the cytoplasmic membrane and enhanced pDNA cellular entry and gene expression. Nevertheless, the quantity of pDNA detected inside cell nucleus is always very small when compared with the bigger amount reaching cytoplasm (accumulation of pDNA is evident in the perinuclear region), suggesting that the main barrier to transfection is the nuclear membrane. Future work can then be envisaged based on the versatility of these systems as biomedical molecular materials, such as the conjugation of PAMAM dendrimers to molecules able to bind nuclear membrane receptors and to promote nuclear translocation.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Steam explosion process is employed for the successful extraction of cellulose nanofibrils from pineapple leaf fibres for the first time. Steam coupled acid treatment on the pineapple leaf fibres is found to be effective in the depolymerization and defibrillation of the fibre to produce nanofibrils of these fibres. The chemical constituents of the different stages of pineapple fibres undergoing treatment were analyzed according to the ASTM standards. The crystallinity of the fibres is examined from the XRD analysis. Characterization of the fibres by SEM. AFM and TEM supports the evidence for the successful isolation of nanofibrils from pineapple leaf. The developed nanocellulose promises to be a very versatile material having the wide range of biomedical applications and biotechnological applications, such as tissue engineering, drug delivery, wound dressings and medical implants. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Dental pulp stem cells have been widely investigated because of their ability to differentiate into both dental and non-dental cells, with potential use in therapies involving tissue engineering. The technique of cell cryopreservation represents a viable alternative for the conservation of these cells, since it stops reversibly, in a controlled manner, all of cell biological functions in an ultra low temperature. The present study aimed to evaluate, using in vitro experiments, the influence of a cryopreservation protocol on the biologic acti vity of stem cells from human exfoliated deciduous teeth (SHED). Cells obtained from the pulp of three deciduous teeth on end-stage exfoliation or with indicated extraction were expanded in α-MEM culture medium supplemented with antibiotics and 15% fetal bovine serum. At second subculture (P2), a group of cells were submitted to cryopreservation for 30 days in 10% DMSO diluted in fetal bovine serum, at -80º C, while the remind cells continued under normal conditions of cell culture. Cell proliferation was evaluated in both groups (not cryopreserved or cryopreserved) by Trypan blue stain essay at intervals of 24, 48 and 72h after plating. Cell cycle analysis of SHEDs submitted or not to the cryopreservation protocol was performed in the same intervals. Events related to cell death were studied by Annexyn V and PI expression under flow cytometry at the intervals of 24 and 72h. The presence of nuclear morphological changes was evaluated by DAPI staining at 72h interval. It was observed that both groups exhibited an upward cell proliferation curve, without considerable changes in cell viability throughout the experiment. The distribution of cell in the cell cycle phasis was consistent with cell proliferation in both groups. There were no nuclear morphological damages in the end range of the experiment. therefore, it is concluded that the proposed cryopreservation protocol is efficient for storing the studied cell type, allowing its use in future experimental studies
Resumo:
OBJETIVOS: O presente estudo teve como objetivo cultivar condrócitos retirados da articulação do joelho de coelhos encapsulados em hidrogel de alginato (HA) e caracterizar a produção de matriz extracelular (ECM). MÉTODOS: A cartilagem articular foi removida do joelho de coelhos, com três a seis meses, fragmentada em pedaços de 1mm e submetida à digestão enzimática. Uma concentração de 1x106 céls/mL foram ressuspensas em uma solução de alginato de sódio a 1,5% (w/v), em seguida fez-se o processo de gelatinização em CaCl2 (102 mM), permitindo a formação do HA e cultivo em meio DMEM-F12 durante quatro semanas. A distribuição das células e a ECM foram acessadas através das secções histológicas coradas com e azul de toluidina hematoxilina e eosina (HE). RESULTADOS: Houve um aumento no número e na viabilidade dos condrócitos durante as quatro semanas de cultura. Através das análises histológicas dos HAs corados com azul de toluidina e HE foi possível observar a distribuição definida dos condrócitos no hidrogel, assemelhando-se a grupos isógenos e formação de matriz territorial. CONCLUSÃO: Este estudo demonstrou a eficiência do HA como arcabouço para ser usado na cultura de condrócitos, constituindo uma alternativa no reparo de lesões na cartilagem articular.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Chitosan, a biopolymer obtained from chitin, and its derivates, such as chitosan hydrochloride, has been reported as wound healing accelerators and as possible bone substitutes for tissue engineering, and therefore these Substances could be relevant in dentistry and periodontology. The purpose of this investigation was to make a histological evaluation of chitosan and chitosan hydrochloride biomaterials (gels) used in the correction of critical size bone defects made in rat's calvaria. Bone defects of 8 mm in diameter were surgically created in the calviria of 50 Holtzman (Rattus norvegicus) rats and filled with blood clot (control), low molecular weight chitosan, high molecular weight chitosan, low molecular weight chitosan hydrochloride, and high molecular weight chitosan hydrochloride, numbering 10 animals, divided into two experimental periods (15 and 60 days), for each biomaterial. The histological evaluation was made based on the morphology of the new-formed tissues in defect's region, and the results indicated that there was no statistical difference between the groups when the new bone formation in the entire defect's area were compared (p > 0.05) and, except in the control groups, assorted degrees of inflammation Could be Seen. In Conclusion, chitosan and chitosan hydrochloride biomaterials used in this study were not able to promote new bone formation in critical size defects made in rat's calvaria. (C) 2009 Wiley Periodicals, Inc. J Biomed Mater Res 93A: 107-114, 2016
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Today's scientific interest in tissue engineering for organ transplantations and regeneration from stem cells, allied with recent observations on biostimulation of tissues and cells by laser radiation, stands as a strong motivation for the present work, in which we examine the effects of the low power laser radiation onto planarians under regenerative process. To investigate those effects, a number of 60 amputated worms were divided in three study groups: a control group and two other groups submitted to daily 1 and 3 min long laser treatment sections at similar to 910 W/m(2) power density. A 685 nm diode laser with 35 mW optical power was used. Samples were sent to histological analysis at the 4th, the 7th and the 15th (lays after amputation. A remarkable increase in stem cells counts for the fourth day of regeneration was observed when the regenerating worms was stimulated by the laser radiation. Our findings encourage further research works on the influence of optical radiation onto stem cells and tissue regeneration. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Purpose: The aim of this work was to evaluate the effectiveness of homogenous demineralized dentin matrix (HDDM) slices in surgical bone defects created in the mandibles of rabbits and occluded with a polytetrafluoroethylene (PTFE) membrane in the promotion of bone growth. Materials and Methods: Surgical bone defects were created in 36 adult rabbits and divided into 4 groups: bone defect (control), bone defect with PTFE membrane, bone defect with HDDM, and bone defect with both HDDM and a PTFE membrane (HDDM + PTFE). The rabbits were sacrificed after 30, 60, and 90 days, and the bone defects were examined histologically and by histomorphometric analysis (analysis of variance and the Tukey test). Results: The volume of newly formed bone matrix was significantly greater in the HDDM and HDDM + PTFE groups than in the control and PTFE groups. The discrete inflammatory reaction found in the HDDM and HDDM + PTFE groups did not prevent the osteopromotive activity of the dentin matrix. Discussion: HDDM slices were biocompatible and were resorbed during the bone remodeling process. They stimulated the newly formed bone until 30 days after implantation. Conclusion: Bone repair was accelerated in the bone defects treated with HDDM in comparison to the control group.
Resumo:
The aim of this study was to evaluate the effects of the autogenous demineralized dentin matrix (ADDM) on the third molar socket wound healing process in humans, using the guided bone regeneration technique and a polytetrafluoroethylene barrier (PTFE). Twenty-seven dental sockets were divided into three groups: dental socket (Control), dental socket with PTFE barrier (PTFE), and dental socket with ADDM slices associated to PTFE banier (ADDM + PTFE). The dental sockets were submitted to radiographic bone densitometry analysis and statistical analysis on the 15th, 30th, 60th and 90th days using analysis of variance (ANOVA) and Tukey's test (p ≤ 0.05). The radiographic analysis of the ADDM + PTFE group showed greater homogeneity of bone radiopacity than the Control group and the PTFE group, during all the observation times. The dentin matrix gradually disappeared from the dental socket during the course of the repair process, suggesting its resorption during the bone remodeling process. It was concluded that the radiographic bone density of the dental sockets treated with ADDM was similar to that of the surrounding normal bone on the 90th day. The ADDM was biocompatible with the bone tissue of the surgical wounds of human dental sockets. The radiographic analysis revealed that the repair process was discreetly faster in the ADDM + PTFE group than in the Control and PTFE groups, although the difference was not statistically significant. In addition, the radiographic image of the ADDM + PTFE group suggested that its bone architecture was better than that of the Control and PFTE groups.
Resumo:
A variety of effects is attributed to the photo stimulation of tissues, such as improved healing of ulcers, analgesic and anti-inflammatory effects, stimulation of the proliferation of cells of different origins and stimulation of bone repair. Some investigations that make qualitative evaluations, like wound healing and evaluation of pain and edema, can be conducted in human subjects. However, deeper investigations on the mechanisms of action of the light stimulus and other quantitative works that requires biopsies or destructive analysis has to be carried out in animal models or in cell cultures. In this work, we propose the use of planarians as a model to study laser-tissue interaction. Contrasting with cell cultures and unicellular organisms, planarians are among the simplest organism having tissue layers, central nerve system, digestive and excretory system that might have been platforms for the evolution of the complex and highly organized tissues and organs found in higher organisms. For the present study, 685 nm laser radiation was employed. Planarians were cut transversally, in a plane posterior to the auricles. The body fragments were left to regenerate and the proliferation dynamics of stem cells was studied by using histological analysis. Maximum cell count was obtained for the laser treated group at the 4th experimental day. At that experimental time, we also had the largest difference between the irradiated and the non-irradiated control group. We concluded that the studied flatworm could be an interesting animal model for in vivo studies of laser-tissue interactions.
Resumo:
Tendinitis is an important disease that leads to lameness and decreased performance in equine athletes and results in high costs associated with therapy due to a long recovery period and a high rate of recurrence. Although, several treatments for equine tendinitis have been described, few are effective in significantly improving the quality of the extracellular matrix and reducing the rate of recurrence. The use of cell therapy with mesenchymal stem cells (MSCs) derived from various sources has received much attention because of its therapeutic potential for equine tendinitis. In this paper, we review patents on stem cell therapy and the specific use of MSCs for the treatment of equine tendinitis. © 2013 Bentham Science Publishers.