900 resultados para Time inventory models
Resumo:
Abiotic factors are considered strong drivers of species distribution and assemblages. Yet these spatial patterns are also influenced by biotic interactions. Accounting for competitors or facilitators may improve both the fit and the predictive power of species distribution models (SDMs). We investigated the influence of a dominant species, Empetrum nigrum ssp. hermaphroditum, on the distribution of 34 subordinate species in the tundra of northern Norway. We related SDM parameters of those subordinate species to their functional traits and their co-occurrence patterns with E. hermaphroditum across three spatial scales. By combining both approaches, we sought to understand whether these species may be limited by competitive interactions and/or benefit from habitat conditions created by the dominant species. The model fit and predictive power increased for most species when the frequency of occurrence of E. hermaphroditum was included in the SDMs as a predictor. The largest increase was found for species that 1) co-occur most of the time with E. hermaphroditum, both at large (i.e. 750 m) and small spatial scale (i.e. 2 m) or co-occur with E. hermaphroditum at large scale but not at small scale and 2) have particularly low or high leaf dry matter content (LDMC). Species that do not co-occur with E. hermaphroditum at the smallest scale are generally palatable herbaceous species with low LDMC, thus showing a weak ability to tolerate resource depletion that is directly or indirectly induced by E. hermaphroditum. Species with high LDMC, showing a better aptitude to face resource depletion and grazing, are often found in the proximity of E. hermaphroditum. Our results are consistent with previous findings that both competition and facilitation structure plant distribution and assemblages in the Arctic tundra. The functional and co-occurrence approaches used were complementary and provided a deeper understanding of the observed patterns by refinement of the pool of potential direct and indirect ecological effects of E. hermaphroditum on the distribution of subordinate species. Our correlative study would benefit being complemented by experimental approaches.
Resumo:
This paper provides evidence on the sources of co-movement in monthly US and UK stock price movements by investigating the role of macroeconomic and financial variables in a bivariate system with time-varying conditional correlations. Crosscountry communality in response is uncovered, with changes in the US Federal Funds rate, UK bond yields and oil prices having similar negative effects in both markets. Other variables also play a role, especially for the UK market. These effects do not, however, explain the marked increase in cross-market correlations observed from around 2000, which we attribute to time variation in the correlations of shocks to these markets. A regime-switching smooth transition model captures this time variation well and shows the correlations increase dramatically around 1999-2000. JEL classifications: C32, C51, G15 Keywords: international stock returns, DCC-GARCH model, smooth transition conditional correlation GARCH model, model evaluation.
Resumo:
INTRODUCTION AND HYPOTHESIS: This study aims to estimate fecal, urinary incontinence, and sexual function 6 years after an obstetrical anal sphincter tear. METHODS: Among 13,213 women who had a vaginal delivery of a cephalic singleton at term, 196 women sustained an anal sphincter tear. They were matched to 588 controls. Validated questionnaires grading fecal and urinary incontinence, and sexual dysfunction were completed by the participants. RESULTS: Severe fecal incontinence was more frequently reported by women who had sustained an anal sphincter tear compared to the controls. Women with an anal sphincter tear had no increased risk of urinary incontinence, but reported significantly more pain, difficulty with vaginal lubrication, and difficulty achieving orgasm compared to the controls. A fetal occiput posterior position during childbirth was an independent risk factor for both severe urinary incontinence and severe sexual dysfunction. CONCLUSIONS: Fecal incontinence is strongly associated with an anal sphincter tear. A fetal occiput posterior position represents a risk factor for urinary incontinence and sexual dysfunction.
Resumo:
Report for the scientific sojourn at the German Aerospace Center (DLR) , Germany, during June and July 2006. The main objective of the two months stay has been to apply the techniques of LEO (Low Earth Orbiters) satellites GPS navigation which DLR currently uses in real time navigation. These techniques comprise the use of a dynamical model which takes into account the precise earth gravity field and models to account for the effects which perturb the LEO’s motion (such as drag forces due to earth’s atmosphere, solar pressure, due to the solar radiation impacting on the spacecraft, luni-solar gravity, due to the perturbation of the gravity field for the sun and moon attraction, and tidal forces, due to the ocean and solid tides). A high parameterized software was produced in the first part of work, which has been used to asses which accuracy could be reached exploring different models and complexities. The objective was to study the accuracy vs complexity, taking into account that LEOs at different heights have different behaviors. In this frame, several LEOs have been selected in a wide range of altitudes, and several approaches with different complexity have been chosen. Complexity is a very important issue, because processors onboard spacecrafts have very limited computing and memory resources, so it is mandatory to keep the algorithms simple enough to let the satellite process it by itself.
Resumo:
There are both theoretical and empirical reasons for believing that the parameters of macroeconomic models may vary over time. However, work with time-varying parameter models has largely involved Vector autoregressions (VARs), ignoring cointegration. This is despite the fact that cointegration plays an important role in informing macroeconomists on a range of issues. In this paper we develop time varying parameter models which permit cointegration. Time-varying parameter VARs (TVP-VARs) typically use state space representations to model the evolution of parameters. In this paper, we show that it is not sensible to use straightforward extensions of TVP-VARs when allowing for cointegration. Instead we develop a specification which allows for the cointegrating space to evolve over time in a manner comparable to the random walk variation used with TVP-VARs. The properties of our approach are investigated before developing a method of posterior simulation. We use our methods in an empirical investigation involving a permanent/transitory variance decomposition for inflation.
Resumo:
Block factor methods offer an attractive approach to forecasting with many predictors. These extract the information in these predictors into factors reflecting different blocks of variables (e.g. a price block, a housing block, a financial block, etc.). However, a forecasting model which simply includes all blocks as predictors risks being over-parameterized. Thus, it is desirable to use a methodology which allows for different parsimonious forecasting models to hold at different points in time. In this paper, we use dynamic model averaging and dynamic model selection to achieve this goal. These methods automatically alter the weights attached to different forecasting models as evidence comes in about which has forecast well in the recent past. In an empirical study involving forecasting output growth and inflation using 139 UK monthly time series variables, we find that the set of predictors changes substantially over time. Furthermore, our results show that dynamic model averaging and model selection can greatly improve forecast performance relative to traditional forecasting methods.
Resumo:
1. Model-based approaches have been used increasingly in conservation biology over recent years. Species presence data used for predictive species distribution modelling are abundant in natural history collections, whereas reliable absence data are sparse, most notably for vagrant species such as butterflies and snakes. As predictive methods such as generalized linear models (GLM) require absence data, various strategies have been proposed to select pseudo-absence data. However, only a few studies exist that compare different approaches to generating these pseudo-absence data. 2. Natural history collection data are usually available for long periods of time (decades or even centuries), thus allowing historical considerations. However, this historical dimension has rarely been assessed in studies of species distribution, although there is great potential for understanding current patterns, i.e. the past is the key to the present. 3. We used GLM to model the distributions of three 'target' butterfly species, Melitaea didyma, Coenonympha tullia and Maculinea teleius, in Switzerland. We developed and compared four strategies for defining pools of pseudo-absence data and applied them to natural history collection data from the last 10, 30 and 100 years. Pools included: (i) sites without target species records; (ii) sites where butterfly species other than the target species were present; (iii) sites without butterfly species but with habitat characteristics similar to those required by the target species; and (iv) a combination of the second and third strategies. Models were evaluated and compared by the total deviance explained, the maximized Kappa and the area under the curve (AUC). 4. Among the four strategies, model performance was best for strategy 3. Contrary to expectations, strategy 2 resulted in even lower model performance compared with models with pseudo-absence data simulated totally at random (strategy 1). 5. Independent of the strategy model, performance was enhanced when sites with historical species presence data were not considered as pseudo-absence data. Therefore, the combination of strategy 3 with species records from the last 100 years achieved the highest model performance. 6. Synthesis and applications. The protection of suitable habitat for species survival or reintroduction in rapidly changing landscapes is a high priority among conservationists. Model-based approaches offer planning authorities the possibility of delimiting priority areas for species detection or habitat protection. The performance of these models can be enhanced by fitting them with pseudo-absence data relying on large archives of natural history collection species presence data rather than using randomly sampled pseudo-absence data.
Resumo:
This paper compares the forecasting performance of different models which have been proposed for forecasting in the presence of structural breaks. These models differ in their treatment of the break process, the parameters defining the model which applies in each regime and the out-of-sample probability of a break occurring. In an extensive empirical evaluation involving many important macroeconomic time series, we demonstrate the presence of structural breaks and their importance for forecasting in the vast majority of cases. However, we find no single forecasting model consistently works best in the presence of structural breaks. In many cases, the formal modeling of the break process is important in achieving good forecast performance. However, there are also many cases where simple, rolling OLS forecasts perform well.
Resumo:
This paper compares the forecasting performance of different models which have been proposed for forecasting in the presence of structural breaks. These models differ in their treatment of the break process, the parameters defining the model which applies in each regime and the out-of-sample probability of a break occurring. In an extensive empirical evaluation involving many important macroeconomic time series, we demonstrate the presence of structural breaks and their importance for forecasting in the vast majority of cases. However, we find no single forecasting model consistently works best in the presence of structural breaks. In many cases, the formal modeling of the break process is important in achieving good forecast performance. However, there are also many cases where simple, rolling OLS forecasts perform well.
Resumo:
Block factor methods offer an attractive approach to forecasting with many predictors. These extract the information in these predictors into factors reflecting different blocks of variables (e.g. a price block, a housing block, a financial block, etc.). However, a forecasting model which simply includes all blocks as predictors risks being over-parameterized. Thus, it is desirable to use a methodology which allows for different parsimonious forecasting models to hold at different points in time. In this paper, we use dynamic model averaging and dynamic model selection to achieve this goal. These methods automatically alter the weights attached to different forecasting model as evidence comes in about which has forecast well in the recent past. In an empirical study involving forecasting output and inflation using 139 UK monthly time series variables, we find that the set of predictors changes substantially over time. Furthermore, our results show that dynamic model averaging and model selection can greatly improve forecast performance relative to traditional forecasting methods.
Resumo:
In this paper we develop methods for estimation and forecasting in large timevarying parameter vector autoregressive models (TVP-VARs). To overcome computational constraints with likelihood-based estimation of large systems, we rely on Kalman filter estimation with forgetting factors. We also draw on ideas from the dynamic model averaging literature and extend the TVP-VAR so that its dimension can change over time. A final extension lies in the development of a new method for estimating, in a time-varying manner, the parameter(s) of the shrinkage priors commonly-used with large VARs. These extensions are operationalized through the use of forgetting factor methods and are, thus, computationally simple. An empirical application involving forecasting inflation, real output, and interest rates demonstrates the feasibility and usefulness of our approach.
Resumo:
The authors investigated the dimensionality of the French version of the Rosenberg Self-Esteem Scale (RSES; Rosenberg, 1965) using confirmatory factor analysis. We tested models of 1 or 2 factors. Results suggest the RSES is a 1-dimensional scale with 3 highly correlated items. Comparison with the Revised NEO-Personality Inventory (NEO-PI-R; Costa, McCrae, & Rolland, 1998) demonstrated that Neuroticism correlated strongly and Extraversion and Conscientiousness moderately with the RSES. Depression accounted for 47% of the variance of the RSES. Other NEO-PI-R facets were also moderately related with self-esteem.
Resumo:
This paper considers the lag structures of dynamic models in economics, arguing that the standard approach is too simple to capture the complexity of actual lag structures arising, for example, from production and investment decisions. It is argued that recent (1990s) developments in the the theory of functional differential equations provide a means to analyse models with generalised lag structures. The stability and asymptotic stability of two growth models with generalised lag structures are analysed. The paper concludes with some speculative discussion of time-varying parameters.
Resumo:
Time-inconsistency is an essential feature of many policy problems (Kydland and Prescott, 1977). This paper presents and compares three methods for computing Markov-perfect optimal policies in stochastic nonlinear business cycle models. The methods considered include value function iteration, generalized Euler-equations, and parameterized shadow prices. In the context of a business cycle model in which a scal authority chooses government spending and income taxation optimally, while lacking the ability to commit, we show that the solutions obtained using value function iteration and generalized Euler equations are somewhat more accurate than that obtained using parameterized shadow prices. Among these three methods, we show that value function iteration can be applied easily, even to environments that include a risk-sensitive scal authority and/or inequality constraints on government spending. We show that the risk-sensitive scal authority lowers government spending and income-taxation, reducing the disincentive households face to accumulate wealth.
Resumo:
Fixed delays in neuronal interactions arise through synaptic and dendritic processing. Previous work has shown that such delays, which play an important role in shaping the dynamics of networks of large numbers of spiking neurons with continuous synaptic kinetics, can be taken into account with a rate model through the addition of an explicit, fixed delay. Here we extend this work to account for arbitrary symmetric patterns of synaptic connectivity and generic nonlinear transfer functions. Specifically, we conduct a weakly nonlinear analysis of the dynamical states arising via primary instabilities of the stationary uniform state. In this way we determine analytically how the nature and stability of these states depend on the choice of transfer function and connectivity. While this dependence is, in general, nontrivial, we make use of the smallness of the ratio in the delay in neuronal interactions to the effective time constant of integration to arrive at two general observations of physiological relevance. These are: 1 - fast oscillations are always supercritical for realistic transfer functions. 2 - Traveling waves are preferred over standing waves given plausible patterns of local connectivity.