978 resultados para Tile Calculations


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Albert Kahn, architect. In 1918 the old library was demolished and a new front (north facade) was attached to the 1893 stacks and the stacks built in 1916-1917. This was referred to as the (New) General Library until the south stack addition was built in 1967-1970, when the entire library building was named the Harlan Hatcher Graduate Library.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

From Bulletin of the Bureau of Fisheries, vol. xxiv, 1904.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Fourth edition, May 1929."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Subject category: Physics."--Cover.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Density functional theory calculations were used to investigate the mechanisms of NO-carbon and N2O-carbon reactions. It was the first time that the importance of surface nitrogen groups was addressed in the kinetic behaviors of the NO-carbon reaction. It was found that the off-plane nitrogen groups that are adjacent to the zigzag edge sites and in-plane nitrogen groups that are located on the armchair sites make the bond energy of oxygen desorption even ca. 20% lower than that of the off-plane epoxy group adjacent to zigzag edge sites and in-plane o-quinone oxygen atoms on armchair sites; this may explain the reason why the experimentally obtained activation energy of the NO-carbon reaction is ca. 20% lower than that of the O-2-carbon reaction over 923 K. A higher ratio of oxygen atoms can be formed in the N2O-carbon reaction, because of the lower dissociation energy of N2O, which results in a higher ratio of off-plane epoxy oxygen atoms. The desorption energy of semiquinone with double adjacent off-plane oxygen groups is ca. 20% less than that of semiquinone with only one adjacent off-plane oxygen group. This may be the reason why the activation energy of N2O is also ca. 20% less than that of the O-2-carbon reaction. The new mechanism can also provide a good qualitative comparison for the relative reaction rates of NO-, N2O-, and O-2-carbon reactions. The anisotropic characters of these gas-carbon reactions can also be well explained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: It is essential for health-care professionals to calculate drug doses accurately. Previous studies have demonstrated that many hospital doctors were unable to accurately convert dilutions (e.g. 1:1000) or percentages (e.g. percentage w/v) of drug concentrations into mass concentrations (e.g. mg/mL). Aims: The aims of the present study were to evaluate the ability of health-care professionals to perform drug dose calculations accurately and to determine their preferred concentration convention when calculating drug doses. Methods: A selection of nurses, medical students, house surgeons, registrars and pharmacists undertook a written survey to assess their ability to perform five drug dose calculations. Participants were also asked which concentration convention they preferred when calculating drug doses. The surveys were marked then analysed for health-care professionals as a whole and then by subgroup analysis to assess the performance of each health-care-professional group. Results: Overall, less than 14% of the surveyed health-care professionals could answer all five questions correctly. Subgroup analysis revealed that health-care pro-fessionals' ability to calculate drug doses were ranked in the following order: registrars approximate to pharmacists > house surgeons > medical students >> nurses. Ninety per cent of health-care professionals preferred to calculate drug doses using the mass concentration convention. Conclusions: Overall, drug dose calculations were performed poorly. Mass concentration was clearly indicated as the preferred convention for calculating drug doses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bound and resonance states of HO2 are calculated quantum mechanically using both the Lanczos homogeneous filter diagonalization method and the real Chebyshev filter diagonalization method for nonzero total angular momentum J=6 and 10, using a parallel computing strategy. For bound states, agreement between the two methods is quite satisfactory; for resonances, while the energies are in good agreement, the widths are in general agreement. The quantum nonzero-J specific unimolecular dissociation rates for HO2 are also calculated. (C) 2004 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The potential energy surfaces for the reactions of atomic oxygen in its ground electronic state, O(P-3), with the olefins: CF2=CCl2 and CF2=CF - CF3, have been characterized using ab initio molecular orbital calculations. Geometry optimization and vibrational frequency calculations were performed for reactants, transition states and products at the MP2 and QCISD levels of theory using the 6-31G(d) basis set. This database was then used to calculate the rate constants by means of Transition-State-Theory. To obtain a better reference and to test the reliability of the activation barriers we have also carried out computations using the CCSD(T)(fc)/6-311Gdagger, MP4(SDQ)(fc)/CBSB4 and MP2(fc)/CBSB3 single point energy calculations at both of the above levels of theory, as well as with the composite CBS-RAD procedure ( P. M. Mayer, C. J. Parkinson, D. M. Smith and L. Radom, J. Chem. Phys., 1998, 108, 604) and a modi. cation of this approach, called: CBS-RAD( MP2, MP2). It was found that the kinetic parameters obtained in this work particularly with the CBS-RAD ( MP2, MP2) procedure are in reasonable agreement with the experimental values. For both reactions it is found that the channels leading to the olefin double-bond addition predominates with respect to any other reaction pathway. However, on account of the different substituents in the alkenes we have located, at all levels of theory, two transition states for each reaction. Moreover, we have found that, for the reactions studied, a correlation exists between the activation energies and the electronic structure of the transition states which can explain the influence of the substituent effect on the reactivity of the halo-olefins.