930 resultados para Theta Tau
Resumo:
The influence of mechanical activation on the formation of Bi2VO5.5 bismuth vanadate (BiV) phase, was investigated by ball-milling a stoichiometric mixture of bismuth oxide and vanadium pentoxide. The structural evolution of the desired BN phase, via an intermediate BiVO4,phase, was investigated using X-ray powder diffraction; (XRD), differential thermal analysis (DTA) and transmission electron microscopy (TEM). Milling for 54h. yielded monophasic gamma-BiV powders with an average crystallite size of 30 nm. The electron paramagnetic resonance (EPR) peaks associated with the V4+ ions are stronger and broader in nanocrystalline (n) BN than in the conventionally prepared microcrystalline (m) BN, suggesting theta significant portion of V5+ has been transformed to V4+ during milling. The optical bandgap of n-BiV was found to be higher than that of m-BiV. High density (97% of the theoretical density), fine-grained (average grain-size of 2 tun) ceramics with uniform grain-size distribution could be fabricated using n-BiV powders. These fine-grained ceramics exhibit improved dielectric, pyre and ferroelectric properties. (C) 1999 Elsevier Science S.A. All rights reserved.
Resumo:
A new series of twin nonlinear optical (NLO) molecules, having two 4-nitrophenol chromophores that are linked via a flexible polymethylene spacer of varying length [(CH2)(n), n = 1-12], were synthesized. Powder second harmonic generation measurements of these twin samples indicated a pronounced odd-even oscillation, with the odd twins exhibiting a high SHG value while the even ones gave no measurable SH signal. This behavior reflects the crystal packing preferences in such twin NLO systems that have odd and even numbers of atoms linking them - the even ones appear to prefer a centrosymmetric packing arrangement. The orientational/disordering dynamics of these twin NLO molecules, doped in a polymer (poly(methyl methacrylate)) matrix, has also been studied using SHG in electric field poled samples. Interestingly, the maximum attainable SH signal, chi((2)), in, the poled samples also showed an odd-even oscillation; the odd ones again having a higher value of chi((2)) This unprecedented odd-even oscillation in such molecularly doped systems is rationalized as being due to the intrinsically greater ease of a parallel alignment of the two chromophores in the twins with an odd spacer than in those with an even one. Further, the temporal stability of the SHG intensity at 70 degrees C, after the removal of the applied corona, was also studied. The relaxation of all the twin chromophores followed a biexponential decay; the characteristic relaxation time (tau(2)) for the slow decay component suggests that while the twin with a single methylene unit relaxes relatively slowly, the relaxation is significantly faster in cases where n = 2 and 3. In the twins with even longer spacer segments, the relaxation again becomes slower and reaches a saturation value. The observed minimum appears to reflect the interplay of two competing factors that affect the chromophore alignment in such twin systems, namely, the electrostatic repulsion between neighboring oriented dipoles and the intrinsic flexibility of the spacer.
Resumo:
We study the distribution of residence time or equivalently that of "mean magnetization" for a family of Gaussian Markov processes indexed by a positive parameter alpha. The persistence exponent for these processes is simply given by theta=alpha but the residence time distribution is nontrivial. The shape of this distribution undergoes a qualitative change as theta increases, indicating a sharp change in the ergodic properties of the process. We develop two alternate methods to calculate exactly but recursively the moments of the distribution for arbitrary alpha. For some special values of alpha, we obtain closed form expressions of the distribution function. [S1063-651X(99)03306-1].
Resumo:
[1] During a comprehensive aerosol field campaign, simultaneous measurements were made of aerosol spectral optical depths, black carbon mass concentration (M-b), total (M-t) and size segregated aerosol mass concentrations over an urban continental location, Bangalore (13 degreesN, 77 degreesE, 960 m msl), in India. Large amounts of BC were observed; both in absolute terms and fraction of total mass (similar to11%) and submicron mass (similar to23%) implying a significantly low single scatter albedo. The aerosol visible optical depth (tau(p)) was in the range 0.24 to 0.45. Estimated surface forcing is as high as -23 W m(-2) and top of the atmosphere (TOA) forcing is +5 Wm(-2) during relatively cleaner periods (tau(p) similar to 0.24). The net atmospheric absorption translates to an atmospheric heating of similar to0.8 K day(-1) for cleaner periods and similar to1.5 K day(-1) for less cleaner periods (tau(p) similar to 0.45). Our observations raise several issues, which may have impacts to regional climate and monsoon.
Resumo:
We have studied the power spectral density [S(f) = gamma/f(alpha)] of universal conductance fluctuations (UCF's) in heavily doped single crystals of Si, when the scatterers themselves act as the primary source of dephasing. We observed that the scatterers, with internal dynamics like two-level-systems, produce a significant, temperature-dependent reduction in the spectral slope alpha when T less than or similar to 10 K, as compared to the bare 1/f (alphaapproximate to1) spectrum at higher temperatures. It is further shown that an upper cutoff frequency (f(m)) in the UCF spectrum is necessary in order to restrict the magnitude of conductance fluctuations, [(deltaG(phi))(2)], per phase coherent region (L-phi(3)) to [(deltaGphi)(2)](1/2) less than or similar to e(2)/h. We find that f(m) approximate to tau(D)(-1), where tau(D) = L-2/D, is the time scale of the diffusive motion of the electron along the active length (L) of the sample (D is the electron diffusivity).
Resumo:
We report the formation of a primitive icosahedral quasicrystal with increased stability in Al Mn-Be alloys close to the compound Al15Mn13Be2, by melt spinning and injection casting. The crystal structure of this compound was unknown. We show that in as-cast as well as heat treated condition the intermetallic phase H1 has a hexagonal structure with lattice parameters a = 1.2295 run and c = 2.4634 nm. The space group is P6(3)/mmc In the injection-cast samples, the quasicrystal coexists with another closely related hexagonal phase H2 with a = 1.2295 nm and c = 1.2317 nm with a possible space group of P6/mmm. This phase exhibits specific orientation relationships with the icosahedral quasicrystal given by [0001](hex)//2f(QC) and [01 (1) over bar0](hex)//5f(QC) where 2f(QC) and 5f(QC) represent twofold and fivefold axes respectively. Electron diffraction patterns from both phases exhibit a close resemblance to the quasicrystalline phase. It is shown that the H1 phase is closely related to mu-Al4Mn with the same e parameter while the a parameter is reduced by tau. Following Kreiner and Franzen, it is postulated that both structures (H1 and H2) can be understood by a simple hexagonal packing of I13 clusters.
Resumo:
Glass nanocomposites in the system (100 - x)Li2B4O7-xSrBi(2)Ta(2)O(9) (0 less than or equal to x less than or equal to 22.5, in molar ratio) were fabricated via a melt quenching technique followed by controlled heat-treatment. The as-quenched samples were confirmed to be glassy and amorphous by differential thermal analysis (DTA) and X-ray powder diffraction (XRD) techniques, respectively. The phase formation and crystallite size of the heat-treated samples (glass nanocomposites) were monitored by XRD and transmission electron microscopy (TEM). The relative permittivities (epsilon(tau)') of the glass nanocomposites for different compositions were found to lie in between that of the parent host glass (Li2B4O7) and strontium bismuth tantalate (SBT) ceramic in the frequency range 100 Hz-40 MHz at 300 K, whereas the dielectric loss (D) of the glass nanocomposite was less than that of both the parent phases. Among the various dielectric models employed to predict the effective relative permittivity of the glass nanocomposite, the one obtained using the Maxwell's model was in good agreement with the experimentally observed value. Impedance analysis was employed to rationalize the electrical behavior of the glasses and glass nanocomposites. The pyroelectric response of the glasses and glass nanocomposites was monitored as a function of temperature and the pyroelectric coefficient for glass and glass nanocomposite (x = 20) at 300 K were 27 muC m(-2) K-1 and 53 muC m(-2) K-1, respectively. The ferroelectric behavior of these glass nanocomposites was established by P vs. E hysteresis loop studies. The remnant polarization (P-r) of the glass nanocomposite increases with increase in SBT content. The coercive field (E-c) and P-r for the glass nanocomposite (x = 20) were 727 V cm(-1) and 0.527 muC cm(-2), respectively. The optical transmission properties of these glass nanocomposites were found to be composition dependent. The refractive index (n = 1.722), optical polarizability (am = 1.266 6 10 23 cm 3) and third-order nonlinear optical susceptibility (x(3) = 3.046 6 10(-21) cm(3)) of the glass nanocomposite (x = 15) were larger than those of the as-quenched glass. Second harmonic generation (SHG) was observed in transparent glass nanocomposites and the d(eff) for the glass nanocomposite (x = 20) was found to be 0.373 pm V-1.
Resumo:
Temperature dependent Mossbauer measurements are done on the samples of La1- xCaxMn1-y (FeyO3)-Fe-57 with x=0 and 0.25, and y=0.01. With decreasing temperature, the specimen with x=0.25 shows a paramagnetic to ferromagnetic transition around 175 K. In the specimen x=0.0, the temperature dependence of both the center shift (delta) and the recoilless fraction (f) can be fitted very well with the Debye theory with a theta(D)=320+/-50 K. But for the specimens with x=0.25, f and delta show distinct deviations from the Debye behavior in the temperature range in which the resistivity shows a sharp decrease. Dips observed in both the f and delta around the transition temperature suggest that the Jahn-Teller distortion observed in these systems is dynamic in nature.
Resumo:
We consider the Finkelstein action describing a system of spin-polarized or spinless electrons in 2+2epsilon dimensions, in the presence of disorder as well as the Coulomb interactions. We extend the renormalization-group analysis of our previous work and evaluate the metal-insulator transition of the electron gas to second order in an epsilon expansion. We obtain the complete scaling behavior of physical observables like the conductivity and the specific heat with varying frequency, temperature, and/or electron density. We extend the results for the interacting electron gas in 2+2epsilon dimensions to include the quantum critical behavior of the plateau transitions in the quantum Hall regime. Although these transitions have a very different microscopic origin and are controlled by a topological term in the action (theta term), the quantum critical behavior is in many ways the same in both cases. We show that the two independent critical exponents of the quantum Hall plateau transitions, previously denoted as nu and p, control not only the scaling behavior of the conductances sigma(xx) and sigma(xy) at finite temperatures T, but also the non-Fermi-liquid behavior of the specific heat (c(v)proportional toT(p)). To extract the numerical values of nu and p it is necessary to extend the experiments on transport to include the specific heat of the electron gas.
Resumo:
We present an extensive study on magnetic and transport properties of La(0.85)Sr(0.15)CoO(3) single crystals grown by a float zone method to address the issue of phase separation versus spin-glass (SG) behavior. The dc magnetization study reveals a kink in field-cooled magnetization, and the peak in the zero-field-cooling curve shifts to lower temperature at modest dc fields, indicating the SG magnetic phase. The ac susceptibility study exhibits a considerable frequency-dependent peak shift (similar to 4 K) and a time-dependent memory effect below the freezing temperature. In addition, the characteristic time scale tau(0) estimated from the frequency-dependent ac susceptibility measurement is found to be similar to 10(-13) s, which matches well with typical values observed in canonical SG systems. The transport relaxation study evidently demonstrates the time-dependent glassy phenomena. In essence, all our experimental results corroborate the existence of SG behavior in La(0.85)Sr(0.15)CoO(3) single crystals.
Resumo:
We present the first results of an observational programme undertaken to map the fine structure line emission of singly ionized carbon ([ CII] 157 : 7409 mum) over extended regions using a Fabry Perot spectrometer newly installed at the focal plane of a 100 cm balloon- borne far- infrared telescope. This new combination of instruments has a velocity resolution of similar to 200 km s(-1) and an angular resolution of 1.'5. During the first flight, an area of 30' x 15' in Orion A was mapped. These observations extend over a larger area than previous observations, the map is fully sampled and the spectral scanning method used enables reliable estimation of the continuum emission at frequencies adjacent to the [ CII] line. The total [ CII] line luminosity, calculated by considering up to 20% of the maximum line intensity is 0.04% of the luminosity of the far- infrared continuum. We have compared the [ CII] intensity distribution with the velocity- integrated intensity distributions of (CO)-C-13(1- 0), CI(1- 0) and CO( 3- 2) from the literature. Comparison of the [ CII], [ CI] and the radio continuum intensity distributions indicates that the largescale [ CII] emission originates mainly from the neutral gas, except at the position of M 43, where no [ CI] emission corresponding to the [ CII] emission is seen. Substantial part of the [ CII] emission from here originates from the ionized gas. The observed line intensities and ratios have been analyzed using the PDR models by Kaufman et al. ( 1999) to derive the incident UV flux and volume density at a few selected positions. The models reproduce the observations reasonably well at most positions excepting the [ CII] peak ( which coincides with the position of theta(1) Ori C). Possible reason for the failure could be the simplifying assumption of a homogeneous plane parallel slab in place of a more complicated geometry.
Resumo:
The effect of host glass composition on the optical absorption and fluorescence spectra of Nd3+ has been studied in mixed alkali borate glasses of the type xNa(2)O-(30-x)K2O-69.5B(2)O(3)-0.5Nd(2)O(3) (X = 5,10,15,20 and 25). Various spectroscopic parameters such as Racah (E-1, E-2 and E-3), spin-orbit (xi(4f)) and configuration interaction (alpha, beta) parameters have been calculated. The Judd-Ofelt intensity parameters (Omega(lambda)) have been calculated and the radiative transition probabilities (A(rad)), radiative lifetimes (tau(r)), branching ratios (beta) and integrated absorption cross sections (Sigma) have been obtained for certain excited states of the Nd3+, ion and are discussed with respect to x. From the fluorescence spectra, the effective fluorescence line widths (Deltalambda(eff)) and stimulated emission cross sections (sigma(p)) have been obtained for the three transitions F-4(3/2) --> I-4(9/2), F-4(3/2) --> I-4(11/2) and F-4(3/2) --> I-4(13/2) of Nd3+. The stimulated emission cross section (sigma(p)) values are found to be in the range (2.0-4.8) x 10(-2)0 cm(2) and they are large enough to indicate that the mixed alkali borate glasses could be potential laser host materials.
Resumo:
We analyze the dynamics of desorption of a polymer molecule which is pulled at one of its ends with force f, trying to desorb it. We assume a monomer to desorb when the pulling force on it exceeds a critical value f(c). We formulate an equation for the average position of the n-th monomer, which takes into account excluded-volume interaction through the blob-picture of a polymer under external constraints. The approach leads to a diffusion equation with a p-Laplacian for the propagation of the stretching along the chain. This has to be solved subject to a moving boundary condition. Interestingly, within this approach, the problem can be solved exactly in the trumpet, stem-flower and stem regimes. In the trumpet regime, we get tau = tau(0)n(d)(2), where n(d) is the number of monomers that have desorbed at the time tau. tau(0) is known only numerically, but for f close to f(c), it is found to be tau(0) similar to f(c)/(f(2/3) - f(c)(2/3)) If one used simple Rouse dynamics, this result would change to tau similar to f(c)n(d)(2)/(f - f(c)). In the other regimes too, one can find exact solution, and interestingly, in all regimes tau similar to n(d)(2). Copyright (C) EPLA, 2011
Resumo:
We consider the problem of maintaining information about the rank of a matrix $M$ under changes to its entries. For an $n \times n$ matrix $M$, we show an amortized upper bound of $O(n^{\omega-1})$ arithmetic operations per change for this problem, where $\omega < 2.376$ is the exponent for matrix multiplication, under the assumption that there is a {\em lookahead} of up to $\Theta(n)$ locations. That is, we know up to the next $\Theta(n)$ locations $(i_1,j_1),(i_2,j_2),\ldots,$ whose entries are going to change, in advance; however we do not know the new entries in these locations in advance. We get the new entries in these locations in a dynamic manner.
Resumo:
We derive bounds on leptonic double mass insertions of the type delta(l)(i4)delta(l)(4j) in four generational MSSM, using the present limits on l(i) -> l(j) + gamma. Two main features distinguish the rates of these processes in MSSM4 from MSSM3: (a) tan beta is restricted to be very small less than or similar to 3 and (b) the large masses for the fourth generation leptons. In spite of small tan beta, there is an enhancement in amplitudes with LLRR (4 delta(ll)(i4)delta(rr)(4j)) type insertions which pick up the mass of the fourth generation lepton, m(tau'). We find these bounds to be at least two orders of magnitude more stringent than those in MSSM3. (C) 2011 Elsevier B.V. All rights reserved.