829 resultados para Thermal stimulus
Resumo:
Availability of basic information on weed biology is an essential tool for designing integrated management programs for agricultural systems. Thus, this study was carried out in order to calculate the base temperature (Tb) of southern sandbur (Cenchrus echinatus), as well as fit the initial growth and development of the species to accumulated thermal units (growing degree days - GDD). For that purpose, experimental populations were sown six times in summer/autumn conditions (decreasing photoperiod) and six times in winter/spring condition (increasing photoperiod). Southern sandbur phenological evaluations were carried out, on alternate days, and total dry matter was measured when plants reached the flowering stage. All the growth and development fits were performed based on thermal units by assessing five base temperatures, as well as the absence of it. Southern sandbur development was best fit with Tb = 12 ºC, with equation y = 0,0993x, where y is the scale of phenological stage and x is the GDD. On average, flowering was reached at 518 GDD. Southern sandbur phenology may be predicted by using mathematical models based on accumulated thermal units, adopting Tb = 12 ºC. However, other environmental variables may also interfere with species development, particularly photoperiod.
Resumo:
This work was carried out with the objective of evaluating growth and development of sourgrass (Digitaris insularis) based on days or thermal units (growing degree days - GDD). Two independent trials were developed aiming to quantify the species' phenological development and total dry matter accumulation in increasing or decreasing photoperiod conditions. Plants were grown in 4 L plastic pots, filled with commercial substrate, adequately fertilized. In each trial, nine growth evaluations were carried out, with three replicates. Phenological development of sourgrass was correctly fit to time scale in days or GDD, through linear equation of first degree. Sourgrass has slow initial growth, followed by exponential dry matter accumulation, in increasing photoperiod condition. Maximum total dry matter was 75 and 6 g per plant for increasing and decreasing photoperiod conditions, respectively. Thus, phenological development of sourgrass may be predicted by mathematical models based on days or GDD; however, it should be noted that other environmental variables interfere on the species' growth (mass accumulation), especially photoperiod.
Resumo:
This work was carried out with the objective of elaborating mathematical models to predict growth and development of purple nutsedge (Cyperus rotundus) based on days or accumulated thermal units (growing degree days). Thus, two independent trials were developed, the first with a decreasing photoperiod (March to July) and the second with an increasing photoperiod (August to November). In each trial, ten assessments of plant growth and development were performed, quantifying total dry matter and the species phenology. After that, phenology was fit to first degree equations, considering individual trials or their grouping. In the same way, the total dry matter was fit to logistic-type models. In all regressions four temporal scales possibilities were assessed for the x axis: accumulated days or growing degree days (GDD) with base temperatures (Tb) of 10, 12 and 15 oC. For both photoperiod conditions, growth and development of purple nutsedge were adequately fit to prediction mathematical models based on accumulated thermal units, highlighting Tb = 12 oC. Considering GDD calculated with Tb = 12 oC, purple nutsedge phenology may be predicted by y = 0.113x, while species growth may be predicted by y = 37.678/(1+(x/509.353)-7.047).
Thermal-biological aspects on the seed germination of Cucumis anguria L.: influence of the seed coat
Resumo:
The seed coat influences the early stages of germination of many seeds and sometimes maintains seed dormancy. Early reports have shown that the testa influences the germination response of Cucumis anguria seeds to light although the response to temperature as influenced by the tegument is not well understood. The main purpose of this study was to observe the influence of the testa on the germination of Cucumis anguria by using parameters as germinability and isothermal germination rate. The assays were carried out in a thermal-gradient block with water imbibed seeds kept in darkness. Estimates of the activation enthalpies (deltaH) show |deltaH| < 50 kJ.mol-1 between 26.1 °C and 35.2 °C (intact seeds) and between 25.4 °C and 35.2 °C (scarified seeds), whereas at temperatures greater than 35.2 °C the germination may be limited by processes with |deltaH| > 125 kJ.mol-1. It is suggested that the testa limits embryo expansion rather than interfering with diffusion processes.
Resumo:
Two new Streptomyces phages, øBP1 and øBP2, were isolated from tropical soil samples. These phages presented a large host range and developed both lytic and lysogenic responses in different Streptomyces species tested. Variations in the incubation temperature showed to be important in the development of the replication cycle. Increasing incubation temperature from 30oC to 42oC induced the lytic response of øBP2 and lysogenic of øBP1 in the host strain Streptomyces sp. WL6. øBP1 and øBP2 have icosahedral heads with long tails and were characterized in relation to morphology, G + C content, genome size and adsorption curve
Resumo:
Recent technological developments have created new devices that could improve and simplify the construction of stimulus isolators. HEXFET transistors can switch large currents and hundreds of volts in nanoseconds. The newer opto-isolators can give a pulse rise time of a few nanoseconds, with output compatible with MOSFET devices, in which delays are reduced to nanoseconds. Integrated DC/DC converters are now available. Using these new resources we developed a new electrical stimulus isolator circuit with selectable constant-current and constant-voltage modes, which are precise and easy to construct. The circuit works like a regulated power supply in both modes with output switched to zero or to free mode through an opto-isolator device. The isolator analyses showed good practical performance. The output to ground resistance was 1011 ohms and capacitance 35 picofarads. The rise time and fall time were identical (5 µs) and constant. The selectable voltage or current output mode made it very convenient to use. The current mode, with higher output resistance values in low current ranges, permits intracellular stimulation even with tip resistances close to 100 megaohms. The high compliance of 200 V guarantees the value of the current stimulus. The very low output resistance in the voltage mode made the device highly suitable for extracellular stimulation with low impedance electrodes. Most importantly, these characteristics were achieved with a circuit that was easy to build and modify and assembled with components available in Brazil.
Resumo:
We have shown that tissue-type plasminogen activator (tPA) and plasma kallikrein share a common pathway for liver clearance and that the hepatic clearance rate of plasma kallikrein increases during the acute-phase (AP) response. We now report the clearance of tPA from the circulation and by the isolated, exsanguinated and in situ perfused rat liver during the AP response (48-h ex-turpentine treatment). For the sake of comparison, the hepatic clearance of a tissue kallikrein and thrombin was also studied. We verified that, in vivo, the clearance of 125I-tPA from the circulation of turpentine-treated rats (2.2 ± 0.2 ml/min, N = 7) decreases significantly (P = 0.016) when compared to normal rats (3.2 ± 0.3 ml/min, N = 6). The AP response does not modify the tissue distribution of administered 125I-tPA and the liver accounts for most of the 125I-tPA (>80%) cleared from the circulation. The clearance rate of tPA by the isolated and perfused liver of turpentine-treated rats (15.5 ± 1.3 µg/min, N = 4) was slower (P = 0.003) than the clearance rate by the liver of normal rats (22.5 ± 0.7 µg/min, N = 10). After the inflammatory stimulus and additional Kupffer cell ablation (GdCl3 treatment), tPA was cleared by the perfused liver at 16.2 ± 2.4 µg/min (N = 5), suggesting that Kupffer cells have a minor influence on the hepatic tPA clearance during the AP response. In contrast, hepatic clearance rates of thrombin and pancreatic kallikrein were not altered during the AP response. These results contribute to explaining why the thrombolytic efficacy of tPA does not correlate with the dose administered.
Resumo:
Gasification of biomass is an efficient method process to produce liquid fuels, heat and electricity. It is interesting especially for the Nordic countries, where raw material for the processes is readily available. The thermal reactions of light hydrocarbons are a major challenge for industrial applications. At elevated temperatures, light hydrocarbons react spontaneously to form higher molecular weight compounds. In this thesis, this phenomenon was studied by literature survey, experimental work and modeling effort. The literature survey revealed that the change in tar composition is likely caused by the kinetic entropy. The role of the surface material is deemed to be an important factor in the reactivity of the system. The experimental results were in accordance with previous publications on the subject. The novelty of the experimental work lies in the used time interval for measurements combined with an industrially relevant temperature interval. The aspects which are covered in the modeling include screening of possible numerical approaches, testing of optimization methods and kinetic modelling. No significant numerical issues were observed, so the used calculation routines are adequate for the task. Evolutionary algorithms gave a better performance combined with better fit than the conventional iterative methods such as Simplex and Levenberg-Marquardt methods. Three models were fitted on experimental data. The LLNL model was used as a reference model to which two other models were compared. A compact model which included all the observed species was developed. The parameter estimation performed on that model gave slightly impaired fit to experimental data than LLNL model, but the difference was barely significant. The third tested model concentrated on the decomposition of hydrocarbons and included a theoretical description of the formation of carbon layer on the reactor walls. The fit to experimental data was extremely good. Based on the simulation results and literature findings, it is likely that the surface coverage of carbonaceous deposits is a major factor in thermal reactions.
Resumo:
This thesis concentrates on the validation of a generic thermal hydraulic computer code TRACE under the challenges of the VVER-440 reactor type. The code capability to model the VVER-440 geometry and thermal hydraulic phenomena specific to this reactor design has been examined and demonstrated acceptable. The main challenge in VVER-440 thermal hydraulics appeared in the modelling of the horizontal steam generator. The major challenge here is not in the code physics or numerics but in the formulation of a representative nodalization structure. Another VVER-440 specialty, the hot leg loop seals, challenges the system codes functionally in general, but proved readily representable. Computer code models have to be validated against experiments to achieve confidence in code models. When new computer code is to be used for nuclear power plant safety analysis, it must first be validated against a large variety of different experiments. The validation process has to cover both the code itself and the code input. Uncertainties of different nature are identified in the different phases of the validation procedure and can even be quantified. This thesis presents a novel approach to the input model validation and uncertainty evaluation in the different stages of the computer code validation procedure. This thesis also demonstrates that in the safety analysis, there are inevitably significant uncertainties that are not statistically quantifiable; they need to be and can be addressed by other, less simplistic means, ultimately relying on the competence of the analysts and the capability of the community to support the experimental verification of analytical assumptions. This method completes essentially the commonly used uncertainty assessment methods, which are usually conducted using only statistical methods.
Resumo:
We investigated the dependency of the early facilitatory effect of a prime stimulus (S1) on the physical characteristics of the target stimulus (S2). A go-no go reaction time paradigm was used. The S1 was a gray ring and the S2s were a white vertical line, a white horizontal line, a white cross and a white small ring, all inside a white ring with the same dimensions as the S1. S1 onset-S2 onset asynchrony was 100 ms. The stimuli appeared randomly in any one of the quadrants of a monitor screen. The S2 could occur at the same position as the S1 or at a different one. We observed a strong facilitatory effect when the vertical line or the horizontal line was the go stimulus and no effect when the cross was the go stimulus. These results show that the features of the target stimulus can be decisive for the appearance of the facilitatory effect of a peripheral spatially noninformative prime stimulus.
Resumo:
The early facilitatory effect of a peripheral spatially visual prime stimulus described in the literature for simple reaction time tasks has been usually smaller than that described for complex (go/no-go, choice) reaction time tasks. In the present study we investigated the reason for this difference. In a first and a second experiment we tested the participants in both a simple task and a go/no-go task, half of them beginning with one of these tasks and half with the other one. We observed that the prime stimulus had an early effect, inhibitory for the simple task and facilitatory for the go/no-go task, when the task was performed first. No early effect appeared when the task was performed second. In a third and a fourth experiment the participants were, respectively, tested in the simple task and in the go/no-go task for four sessions (the prime stimulus was presented in the second, third and fourth sessions). The early effects of the prime stimulus did not change across the sessions, suggesting that a habituatory process was not the cause for the disappearance of these effects in the first two experiments. Our findings are compatible with the idea that different attentional strategies are adopted in simple and complex reaction time tasks. In the former tasks the gain of automatic attention mechanisms may be adjusted to a low level and in the latter tasks, to a high level. The attentional influence of the prime stimulus may be antagonized by another influence, possibly a masking one.
Resumo:
Simple reaction time (SRT) in response to visual stimuli can be influenced by many stimulus features. The speed and accuracy with which observers respond to a visual stimulus may be improved by prior knowledge about the stimulus location, which can be obtained by manipulating the spatial probability of the stimulus. However, when higher spatial probability is achieved by holding constant the stimulus location throughout successive trials, the resulting improvement in performance can also be due to local sensory facilitation caused by the recurrent spatial location of a visual target (position priming). The main objective of the present investigation was to quantitatively evaluate the modulation of SRT by the spatial probability structure of a visual stimulus. In two experiments the volunteers had to respond as quickly as possible to the visual target presented on a computer screen by pressing an optic key with the index finger of the dominant hand. Experiment 1 (N = 14) investigated how SRT changed as a function of both the different levels of spatial probability and the subject's explicit knowledge about the precise probability structure of visual stimulation. We found a gradual decrease in SRT with increasing spatial probability of a visual target regardless of the observer's previous knowledge concerning the spatial probability of the stimulus. Error rates, below 2%, were independent of the spatial probability structure of the visual stimulus, suggesting the absence of a speed-accuracy trade-off. Experiment 2 (N = 12) examined whether changes in SRT in response to a spatially recurrent visual target might be accounted for simply by sensory and temporally local facilitation. The findings indicated that the decrease in SRT brought about by a spatially recurrent target was associated with its spatial predictability, and could not be accounted for solely in terms of sensory priming.
Resumo:
An auditory stimulus speeds up a digital response to a subsequent visual stimulus. This facilitatory effect has been related to the expectancy and the immediate arousal that would be caused by the accessory stimulus. The present study examined the relative contribution of these two influences. In a first and a third experiment a simple reaction time task was used. In a second and fourth experiment a go/no-go reaction time task was used. In each of these experiments, the accessory stimulus preceded the target stimulus by 200 ms for one group of male and female volunteers (G Fix). For another group of similar volunteers (G Var) the accessory stimulus preceded the target stimulus by 200 ms in 25% of the trials, by 1000 ms in 25% of the trials and was not followed by the target stimulus in 50% of the trials (Experiments 1a and 1b) or preceded the target stimulus by 200 ms in 6% of the trials and by 1000 ms in 94% of the trials (Experiments 2a and 2b). There was a facilitatory effect of the accessory stimulus for G Fix in the four experiments. There was also a facilitatory effect of the accessory stimulus at the 200-ms stimulus onset asynchrony for G Var in Experiments 1a and 1b but not in Experiments 2a and 2b. The facilitatory effects observed were larger in the go/no-go task than in the simple task. Taken together, these results suggest that expectancy is much more important than immediate arousal for the improvement of performance caused by an accessory stimulus.
Resumo:
Bioenergi ses som en viktig del av det nu- och framtida sortimentet av inhemsk energi. Svartlut, bark och skogsavfall täcker mer än en femtedel av den inhemska energianvändningen. Produktionsanläggningar kan fungera ofullständigt och en mängd gas-, partikelutsläpp och tjära produceras samtidigt och kan leda till beläggningsbildning och korrosion. Orsaken till dessa problem är ofta obalans i processen: vissa föreningar anrikas i processen och superjämviktstillstånd är bildas. I denna doktorsavhandling presenteras en ny beräkningsmetod, med vilken man kan beskriva superjämviktstillståndet, de viktigaste kemiska reaktionerna, processens värmeproduktion och tillståndsstorheter samtidigt. Beräkningsmetoden grundar sig på en unik frienergimetod med bivillkor som har utvecklats vid VTT. Den här så kallade CFE-metoden har tidigare utnyttjats i pappers-, metall- och kemiindustrin. Applikationer för bioenergi, vilka är demonstrerade i doktorsavhandlingen, är ett nytt användingsområde för metoden. Studien visade att beräkningsmetoden är väl lämpad för högtemperaturenergiprocesser. Superjämviktstillstånden kan uppstå i dessa processer och det kemiska systemet kan definieras med några bivillkor. Typiska tillämpningar är förbränning av biomassa och svartlut, förgasning av biomassa och uppkomsten av kväveoxider. Också olika sätt att definiera superjämviktstillstånd presenterades i doktorsavhandlingen: empiriska konstanter, empiriska hastighetsuttryck eller reaktionsmekanismer kan användas. Resultaten av doktorsavhandlingen kan utnyttjas i framtiden i processplaneringen och i undersökning av nya tekniska lösningar för förgasning, förbränningsteknik och biobränslen. Den presenterade metoden är ett bra alternativ till de traditionella mekanistiska och fenomenmodeller och kombinerar de bästa delarna av både. --------------------------------------------------------------- Bioenergia on tärkeä osa nykyistä ja tulevaa kotimaista energiapalettia. Mustalipeä, kuori ja metsätähteet kattavat yli viidenneksen kotimaisesta energian kulutuksesta. Tuotantolaitokset eivät kuitenkaan aina toimi täydellisesti ja niiden prosesseissa syntyy erilaisia kaasu- ja hiukkaspäästöjä, tervoja sekä prosessilaitteita kuluttavia saostumia ja ruostumista. Usein syy näihin ongelmiin on prosessissa esiintyvä epätasapainotila: tietyt yhdisteet rikastuvat prosessissa ja muodostavat supertasapainotiloja. Väitöstyössä kehitettiin uusi laskentamenetelmä, jolla voidaan kuvata nämä supertasapainotilat, tärkeimmät niihin liittyvät kemialliset reaktiot, prosessin lämmöntuotanto ja tilansuureet yhtä aikaa. Laskentamenetelmä perustuu VTT:llä kehitettyyn ainutlaatuiseen rajoitettuun vapaaenergiamenetelmään. Tätä niin kutsuttua CFE-menetelmää on aiemmin sovelluttu onnistuneesti muun muassa paperi-, metalli- ja kemianteollisuudessa. Väitöstyössä esitetyt bioenergiasovellukset ovat uusi sovellusalue menetelmälle. Työ osoitti laskentatavan soveltuvan hyvin korkealämpöisiin energiatekniikan prosesseihin, joissa kemiallista systeemiä rajoittavia tekijöitä oli rajallinen määrä ja siten super-tasapainotila saattoi muodostua prosessin aikana. Tyypillisiä sovelluskohteita ovat biomassan ja mustalipeän poltto, biomassan kaasutus ja typpioksidipäästöt. Työn aikana arvioitiin myös erilaisia tapoja määritellä super-tasapainojen muodostumista rajoittavat tekijät. Rajoitukset voitiin tehdä teollisiin mittauksiin pohjautuen, kokeellisia malleja hyödyntäen tai mekanistiseen reaktiokinetiikkaan perustuen. Tulevaisuudessa väitöstyön tuloksia voidaan hyödyntää prosessisuunnittelussa ja tutkittaessa uusia teknisiä ratkaisuja kaasutus- ja polttotekniikoissa sekä biopolttoaineiden tutkimuksessa. Kehitetty menetelmä tarjoaa hyvän vaihtoehdon perinteisille mekanistisille ja ilmiömalleille yhdistäen näiden parhaita puolia.
Resumo:
The effects of a brief jet of water delivered to the anterior portion of body-head on the heart rate of Megalobulimus mogianensis were determined in a group of intact snails (N = 8), previously prepared for electrocardiogram recording. The heart rate was significantly increased following stimulation. Nevertheless, with repetition of the stimulus there was a significant decrease in the magnitude of the heart rate variation and in the time for the basal heart rate to recover (first stimulus, 7.4 ± 1.2 bpm and 15.5 ± 1.8 min; second stimulus, 4.8 ± 1.0 bpm and 10.6 ± 1.5 min; third stimulus, 5.0 ± 0.3 bpm and 11.1 ± 1.8 min), indicating that this behavioral response undergoes early habituation. To determine the role of the cardiac nerve in mediating the heart rate alterations induced by the jet of water two other groups were tested: denervated animals (N = 8) and sham-operated control animals (N = 8). Although the innocuous stimulus caused the heart rate to increase significantly in both experimental groups, the mean increase in heart rate in denervated animals (3.2 ± 0.4 bpm) was 41% of the value obtained in sham-operated animals (7.8 ± 1.5 bpm), indicating that the cardiac nerve is responsible for 59% of the cardioacceleration induced by the innocuous stimulus. The increase in heart rate observed in denervated animals may be due to an increase in venous return promoted by the intense muscular activity associated with the retraction-protraction of the anterior part of the body induced by the jet of water.