927 resultados para Theoretical stress concentration factor
Resumo:
6th Graduate Student Symposium on Molecular Imprinting
Resumo:
The pathophysiology of depression is related to neurobiological changes that occur in the monoamine system, hypothalamic-pituitary-adrenal axis, neurogenesis system and the neuroimmune system. In recent years, there has been a growing interest in the research of the effects of exercise on brain function, with a special focus on its effects on brainderived neurotrophic factor (BDNF), cortisol and other biomarkers. Thus, the aim of this study is to present a review investigating the acute and chronic effects of aerobic exercise on BDNF and cortisol levels in individuals with depression. It was not possible to establish an interaction between aerobic exercise and concentration of BDNF and cortisol, which may actually be the result of the divergence of methods, such as type of exercises, duration of the sessions, and prescribed intensity and frequency of sessions.
Resumo:
This work aims to evaluate the feasibility of using image-based cytometry (IBC) in the analysis of algal cell quantification and viability, using Pseudokirchneriella subcapitata as a cell model. Cell concentration was determined by IBC to be in a linear range between 1 × 105 and 8 × 106 cells mL−1. Algal viability was defined on the basis that the intact membrane of viable cells excludes the SYTOX Green (SG) probe. The disruption of membrane integrity represents irreversible damage and consequently results in cell death. Using IBC, we were able to successfully discriminate between live (SG-negative cells) and dead algal cells (heat-treated at 65 °C for 60 min; SG-positive cells). The observed viability of algal populations containing different proportions of killed cells was well correlated (R 2 = 0.994) with the theoretical viability. The validation of the use of this technology was carried out by exposing algal cells of P. subcapitata to a copper stress test for 96 h. IBC allowed us to follow the evolution of cell concentration and the viability of copper-exposed algal populations. This technology overcomes several main drawbacks usually associated with microscopy counting, such as labour-intensive experiments, tedious work and lack of the representativeness of the cell counting. In conclusion, IBC allowed a fast and automated determination of the total number of algal cells and allowed us to analyse viability. This technology can provide a useful tool for a wide variety of fields that utilise microalgae, such as the aquatic toxicology and biotechnology fields.
Resumo:
The green alga Pseudokirchneriella subcapitata has been widely used in ecological risk assessment, usually based on the impact of the toxicants in the alga growth. However, the physiological causes that lead algal growth inhibition are not completely understood. This work aimed to evaluate the biochemical and structural modifications in P. subcapitata after exposure, for 72 h, to three nominal concentrations of Cd(II), Cr(VI), Cu(II) and Zn(II), corresponding approximately to 72 h-EC10 and 72 h-EC50 values and a high concentration (above 72 h-EC90 values). The incubation of algal cells with the highest concentration of Cd(II), Cr(VI) or Cu(II) resulted in a loss of membrane integrity of ~16, 38 and 55%, respectively. For all metals tested, an inhibition of esterase activity, in a dose-dependent manner, was observed. Reduction of chlorophyll a content, decrease of maximum quantum yield of photosystem II and modification of mitochondrial membrane potential was also verified. In conclusion, the exposure of P. subcapitata to metals resulted in a perturbation of the cell physiological status. Principal component analysis revealed that the impairment of esterase activity combined with the reduction of chlorophyll a content were related with the inhibition of growth caused by a prolonged exposure to the heavy metals.
Resumo:
Dissertation presented to obtain the Ph.D degree in Biology
Resumo:
Dissertação para a obtenção do grau de doutor em Biologia pelo Instituto de Tecnologia Química e Biológica. Universidade Nova de Lisboa.
Resumo:
Dissertation presented to Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa for obtaining the master degree in Membrane Engineering
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia do Ambiente Perfil de Gestão de Sistemas Ambientais
Resumo:
Dissertation presented to obtain the Ph.D degree in Biology.
Resumo:
World population is increasing at an alarming rate while food productivity is decreasing due to the effect of various abiotic stresses. Soil salinity is one of the most important abiotic stress and a limiting factor for worldwide plant production. In addition to its important effects on yield, salt stress affects numerous cellular activities, including cell wall composition, photosynthesis, protein synthesis, ions and organic solutes. Up to 20% of the irrigated arable land in arid and semiarid regions is already salt affected and is still expanding. Improving salt tolerant varieties is of major importance, and efforts should be focused on finding adaptive mechanisms which are involved in salinity tolerance. In this study, several spelt wheat (Triticum aestivum var. Spelta) genotypes and one cultivar of modern bread wheat were used to screen them for salt tolerance. Spelt is an old-European cereal crop currently attracting renewed interest as a food grain because it is said to be harder than wheat and requires less fertilizer. Spelt wheat is also becoming very attractive genetic source by plant breeders due to its wide adaptation ability to various stressful conditions such as soil salinity. In this study morphological parameters (e.g., leaf appearance; shoot elongation), dry matter production, mineral nutrients (especially Na and K), and activity of antioxidative enzymes were measured to select superior genotypes of spelt for salt tolerance. The results showed that Spelt genotype Sp41 is a salt sensitive genotype and genotypes Sp69, Sp96 and Sp912 are good candidates for salt tolerant genotypes.
Resumo:
Double Degree. A Work Project, presented as part of the requirements for the Award of a Master’s Degree in Finance from NOVA – School of Business and Economics and a Masters Degree in Management from Louvain School of Management
Resumo:
Introduction The immune response caused by Mycobacterium leprae is a risk factor for the development of oxidative stress (OS) in leprosy patients. This study aimed to assess OS in leprosy patients before the use of a multidrug therapy. Methods We evaluated the nitric oxide (NO) concentration; antioxidant capacity; levels of malondialdehyde, methemoglobin and reduced glutathione; and the activity of catalase and superoxide dismutase (SOD) in leprosy patients. Results We observed lower SOD activity in these leprosy patients; however, the NO levels and antioxidant capacity were increased. Conclusions The infectious process in response to M. leprae could primarily be responsible for the OS observed in these patients.
Resumo:
Dissertação de Mestrado apresentada ao ISPA - Instituto Universitário
Resumo:
Conformally flat spacetimes with an elastic stress energy tensor having diagonal trace-free anisotropic pressure are investigated using 1+3 formalism. The 1+3 Bianchi and Jacobi identities and Einstein field equations are written for a particular case with a conformal factor dependent on only one spatial coordinate. Solutions with non null anisotropic pressure are obtained.
Resumo:
Candida parapsilosis is nowadays an emerging opportunistic pathogen and its increasing incidence is part related to the capacity to produce biofilm. In addition, one of the most important C. parapsilosis pathogenic risk factors includes the organisms\textquoteright selective growth capabilities in hyper alimentation solutions. Thus, in this study, we investigated the role of glucose in C. parapsilosis biofilm modulation, by studying biofilm formation, matrix composition and structure. Moreover, the expression of biofilm-related genes (BCR1, FKS1 and OLE1) were analyzed in the presence of different glucose percentages. The results demonstrated the importance of glucose in the modulation of C. parapsilosis biofilm. The concentration of glucose had direct implications on the C. parapsilosis transition of yeast cells to pseudohyphae. Additionally, it was demonstrated that biofilm related genes BCR1, FKS1 and OLE1 are involved in biofilm modulation by glucose. The mechanism by which glucose enhances biofilm formation is not fully understood, however with this study we were able to demonstrate that C. parapsilosis respond to stress conditions caused by elevated levels of glucose by up-regulating genes related to biofilm formation (BCR1, FKS1 and OLE1).