971 resultados para Tension artérielle
Resumo:
The salamanderfish, Lepidogalaxias salamandroides (Galaxiidae, Teleostei) is endemic to southwestern Australia and inhabits shallow, freshwater pools which evaporate during the hot summer months. Burrowing into the substrate in response to falling water levels allows these fish to aestivate for extended periods of time while encapsulated in a mucous cocoon even when the pools contain no water. Only a few minutes after a major rainfall, these fish emerge into relatively clear water which subsequently becomes laden with tannin, turning the water black and reducing the pH to approximately 4.3. As part of a large study of the visual adaptations of this unique species, the retinal and lenticular morphology of the aestivating salamanderfish is examined at the level of the light and electron microscopes. The inner retina is highly vascularised by a complex system of vitreal blood vessels, while the outer retina receives a blood supply by diffusion from a choriocapillaris. This increased retinal blood supply may be an adaptation for reducing the oxygen tension during critical periods of aestivation. Large numbers of Muller cells traverse the thickness of the retina from the inner to the outer limiting membranes. The ganglion cells are arranged in two ill-defined layers, separated from a thick inner nuclear layer containing two layers of horizontal cells by a soma-free inner plexiform layer. The photoreceptors can be divided into three types typical of many early actinopterygian representatives; equal double cones, small single cones and large rods (2:1:1). These photoreceptors are arranged into a unique regular square mosaic comprising a large rod bordered by four equal double cones with a small single cone located at the corner of each repeating unit. The double cones may optimise perception of mobile prey which it tracks by flexion of its head and neck and the large rods may increase sensitivity in the dark tannin-rich waters in which it lives. Each single cone also possesses a dense collection of polysomes and glycogen (a paraboloid) beneath its ellipsoid, the first such finding in teleosts. The retinal pigment epithelium possesses melanosomes, pha,oocytes and a large number of mitochondria. The anatomy of the retina and the photoreceptor mosaic is discussed in relation to the primitive phylogeny of this species and its unique life history.
Resumo:
The metaphor of boundary is ubiquitous and has guided much research on interpersonal and intergroup communication This article explores the metaphor by reviewing the literature on boundaries with a focus on miscommunication and problematic talk. In particular, the tensions around privacy and self-disclosure, and rules about family communication are good examples of communication and miscommunication across interpersonal boundaries. In the intergroup arena, the negotiation of boundaries implicates the sociostructural relations between, groups and the choices individuals make based on the identities that are salient to them in a given context. We argue that miscommunication can best be conceived of as an indicator of tension in negotiating boundaries as they emerge and change in interaction.
Resumo:
The chemical potential of adsorbed film inside cylindrical mesopores is dependent on the attractive interactions between the adsorbed molecules and adsorbent, the curvature of gas/adsorbed phase interface, and surface tension. A state equation of the adsorbed film is proposed to take into account the above factors. Nitrogen adsorption on model adsorbents, MCM-41, which exhibit uniform cylindrical channels, are used to verify the theoretical analysis. The proposed theory is capable of describing the important features of adsorption processes in cylindrical mesopores. According to this theory, at a given relative pressure, the smaller the pore radius is, the thicker the adsorbed film will be. The thickening of adsorbed films in the pores as the vapor pressure increases inevitably causes an increase in the interface curvature, which consequently leads to capillary condensation. Besides, this study confirmed that the interface tension depends substantially on the interface curvature in small mesopores. A quantitative relationship between the condensation pressure and the pore radius can be derived from the state equation and used to predict the pore radius from a condensation pressure, or vice versa.
Resumo:
Methods employing continuum approximation in describing the deformation of layered materials possess a clear advantage over explicit models, However, the conventional implicit models based on the theory of anisotropic continua suffers from certain difficulties associated with interface slip and internal instabilities. These difficulties can be remedied by considering the bending stiffness of the layers. This implies the introduction of moment (couple) stresses and internal rotations, which leads to a Cosserat-type theory. In the present model, the behaviour of the layered material is assumed to be linearly elastic; the interfaces are assumed to be elastic perfectly plastic. Conditions of slip or no slip at the interfaces are detected by a Coulomb criterion with tension cut off at zero normal stress. The theory is valid for large deformation analysis. The model is incorporated into the finite element program AFENA and validated against analytical solutions of elementary buckling problems in layered medium. A problem associated with buckling of the roof and the floor of a rectangular excavation in jointed rock mass under high horizontal in situ stresses is considered as the main application of the theory. Copyright (C) 1999 John Wiley & Sons, Ltd.
Resumo:
The occurrence of foliated rock masses is common in mining environment. Methods employing continuum approximation in describing the deformation of such rock masses possess a clear advantage over methods where each rock layer and each inter-layer interface (joint) is explicitly modelled. In devising such a continuum model it is imperative that moment (couple) stresses and internal rotations associated with the bending of the rock layers be properly incorporated in the model formulation. Such an approach will lead to a Cosserat-type theory. In the present model, the behaviour of the intact rock layer is assumed to be linearly elastic and the joints are assumed to be elastic-perfectly plastic. Condition of slip at the interfaces are determined by a Mohr-Coulomb criterion with tension cut off at zero normal stress. The theory is valid for large deformations. The model is incorporated into the finite element program AFENA and validated against an analytical solution of elementary buckling problems of a layered medium under gravity loading. A design chart suitable for assessing the stability of slopes in foliated rock masses against flexural buckling failure has been developed. The design chart is easy to use and provides a quick estimate of critical loading factors for slopes in foliated rock masses. It is shown that the model based on Euler's buckling theory as proposed by Cavers (Rock Mechanics and Rock Engineering 1981; 14:87-104) substantially overestimates the critical heights for a vertical slope and underestimates the same for sub-vertical slopes. Copyright (C) 2001 John Wiley & Sons, Ltd.
Resumo:
This paper addresses the broader unresolved issues posed by the patenting of genetic materials that are central to dealing with the tension between the patenting and competition schemes, namely distinguishing between what has already been 'discovered' and economically useful innovations (including the thresholds for novelty and non-obviousness), the exclusion of some subject matter from patenting and the restrictions on access to genetic resources to facilitate further innovation. The possible solutions of raising the threshold patenting standards, taking advantage of international intellectual property law developments and compulsory licensing are examined as ways to ameliorate the possibly detrimental consequences of current genetic material patenting practices. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The efficient expression and purification of an interfacially active peptide (mLac21) was achieved by using bioprocess-centered molecular design (BMD), wherein key bioprocess considerations are addressed during the initial molecular biology work. The 21 amino acid mLac21 peptide sequence is derived from the lac repressor protein and is shown to have high affinity for the oil-water interface, causing a substantial reduction in interfacial tension following adsorption. The DNA coding for the peptide sequence was cloned into a modified pET-31(b) vector to permit the expression of mLac21 as a fusion to ketosteroid isomerase (KSI). Rational iterative molecular design, taking into account the need for a scaleable bioprocess flowsheet, led to a simple and efficient bioprocess yielding mLac21 at 86% purity following ion exchange chromatography (and >98% following chromatographic polishing). This case study demonstrates that it is possible to produce acceptably pure peptide for potential commodity applications using common scaleable bioprocess unit operations. Moreover, it is shown that BMD is a powerful strategy that can be deployed to reduce bioseparation complexity. (C) 2004 Wiley Periodicals, Inc.
Resumo:
In this work we report the interaction effects of the local anesthetic dibucaine (DBC) with lipid patches in model membranes by Atomic Force Microscopy (AFM). Supported lipid bilayers (egg phosphatidylcholine, EPC and dimyristoylphosphatidylcholine, DMPQ were prepared by fusion of unilamellar vesicles on mica and imaged in aqueous media. The AFM images show irregularly distributed and sized EPC patches on mica. On the other hand DMPC formation presents extensive bilayer regions on top of which multibilayer patches are formed. In the presence of DBC we observed a progressive disruption of these patches, but for DMPC bilayers this process occurred more slowly than for EPC. In both cases, phase images show the formation of small structures on the bilayer surface suggesting an effect on the elastic properties of the bilayers when DBC is present. Dynamic surface tension and dilatational surface elasticity measurements of EPC and DMPC monolayers in the presence of DBC by the pendant drop technique were also performed, in order to elucidate these results. The curve of lipid monolayer elasticity versus DBC concentration, for both EPC and DMPC cases, shows a maximum for the surface elasticity modulus at the same concentration where we observed the disruption of the bilayer by AFM. Our results suggest that changes in the local curvature of the bilayer induced by DBC could explain the anesthetic action in membranes. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The problem of the negative values of the interaction parameter in the equation of Frumkin has been analyzed with respect to the adsorption of nonionic molecules on energetically homogeneous surface. For this purpose, the adsorption states of a homologue series of ethoxylated nonionic surfactants on air/water interface have been determined using four different models and literature data (surface tension isotherms). The results obtained with the Frumkin adsorption isotherm imply repulsion between the adsorbed species (corresponding to negative values of the interaction parameter), while the classical lattice theory for energetically homogeneous surface (e.g., water/air) admits attraction alone. It appears that this serious contradiction can be overcome by assuming heterogeneity in the adsorption layer, that is, effects of partial condensation (formation of aggregates) on the surface. Such a phenomenon is suggested in the Fainerman-Lucassen-Reynders-Miller (FLM) 'Aggregation model'. Despite the limitations of the latter model (e.g., monodispersity of the aggregates), we have been able to estimate the sign and the order of magnitude of Frumkin's interaction parameter and the range of the aggregation numbers of the surface species. (C) 2004 Elsevier B.V All rights reserved.
Resumo:
There are times when people feel compelled to stand up and articulate their group's shortcomings, an act that carries with it enormous social risks. Indeed, a mechanistic reading of social identity theory might lead one to believe that ingroup critics are doomed to face hostility because they are attacking a fundamental part of people's self-concept. But often ingroup critics are doing more than attacking their group — they are trying to incite positive change. Criticism is the cornerstone of protest, and it is difficult to imagine how a group can be reinvigorated, reinvented, or reformed without some process of critical self-reflection. Thus, although the ingroup critic might create tension within the group, it is possible that internal criticism could be seen by other group members as beneficial in terms of promoting positive change and stimulating innovation, creativity, and flexibility in decision making. In this talk I examine the 'identity rules' that ingroup critics need to follow to avoid defensiveness, and look at empirical evidence of how factors such as language, the intergroup context, and choice of audience shape people's attributions regarding criticism and their subsequent evaluations of critics.
Resumo:
The aim of this study was to identify the psycho-musical factors that govern time evaluation in Western music from baroque, classic, romantic, and modern repertoires. The excerpts were previously found to represent variability in musical properties and to induce four main categories of emotions. 48 participants (musicians and nonmusicians) freely listened to 16 musical excerpts (lasting 20 sec. each) and grouped those that seemed to have the same duration. Then, participants associated each group of excerpts to one of a set of sine wave tones varying in duration from 16 to 24 sec. Multidimensional scaling analysis generated a two-dimensional solution for these time judgments. Musical excerpts with high arousal produced an overestimation of time, and affective valence had little influence on time perception. The duration was also overestimated when tempo and loudness were higher, and to a lesser extent, timbre density. In contrast, musical tension had little influence.
Resumo:
The combined approach of the molecular-kinetic and hydrodynamic theories for description of the motion of three-phase gas-liquid-solid contact lines has been examined using the Wilhelmy plate method. The whole dynamic meniscus has been divided into molecular, hydrodynamic, and static-like regions. The Young-Laplace equation and the molecular-kinetic and hydrodynamic dewetting theories have been applied to describe the meniscus profiles and contact angle. The dissipative forces accompanying the dynamic dewetting have also been investigated. The experiments with a Wilhelmy plate made from an acrylic polymer sheet were carried out using a computerized apparatus for contact angle analysis (OCA 20, DataPhysics, Germany). The extrapolated dynamic contact angle versus velocity of the three-phase contact line for Milli-Q water and 5 x 10(-4) M SDBS solution was experimentally obtained and compared with the combined MHD models with low and moderate Reynolds numbers. The models predict similar results for the extrapolated contact angle. SDBS decreases the equilibrium contact angle and increases the molecular jumping length but does not affect the molecular frequency significantly. The hydrodynamic deformation of the meniscus, viscous dissipation, and friction were also influenced by the SDBS surfactant. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
This article examines the policy cycle and vernacular globalization in the context of higher education reform in Vietnam. Through an analysis of the development of the Vietnam National University - Hochiminh City as part of the post-1986 reconstruction of Vietnamese higher education, the article considers the complex interrelationship between globalized policy discourses, national interests and history in Vietnam, and the specific politics of policy implementation within one institution. Vietnam National University - Hochiminh City was created through an amalgamation of a number of smaller universities, and against the backdrop of social and economic restructuring aimed at promoting industrialization and a market orientation within socialist governance. The article reveals the dynamic tension between these local and global influences on higher education policy and practice, and more specifically, the dilemmas associated with top-down policy implementation when a new organization consists of older organizations with powerful provenance and reputations. In so doing the article demonstrates the necessity to globalize policy theory.
Resumo:
Vertical direct chill (VDC) casting of aluminium alloys is a mature process that has evolved over many decades through gradual change to both equipment design and casting practice. Today, air-pressurised, continuous lubrication, hot top mould systems with advanced station automation are selected as the process of choice for producing extrusion billet. Specific sets of operating parameters are employed on these stations for each alloy and size combination to produce optimal billet quality. The designs and parameters are largely derived from past experience and accumulated know-how. Recent experimental work at the University of Queensland has concentrated on understanding the way in which the surface properties of liquid aluminium alloys, e.g., surface tension, wetting angle and oxide skin strength, influence the size and shape of the naturally-stab le meniscus for a given alloy, temperature and atmosphere. The wide range of alloy-and condition-dependent values measured has led to the consideration of how these properties impact the stability of the enforced molten metal meniscus within the hot top mould cavity. The actual shape and position of the enforced meniscus is controlled by parameters such as the upstream conduction distance (UCD) from sub-mould cooling and the molten metal head. The degree of deviation of this actual meniscus from the predicted stable meniscus is considered to be a key driver in surface defect formation. This paper reports on liquid alloy property results and proposes how this knowledge might be used to better design VDC mould systems and casting practices.
Resumo:
Purpose: To test the hypothesis that ruptured abdominal aortic aneurysms (AAA) are globally weaker than unruptured ones. Methods: Four ruptured and seven unruptured AAA specimens were harvested whole from fresh cadavers during autopsies performed over an 18-month period. Multiple regionally distributed longitudinally oriented rectangular strips were cut from each AAA specimen for a total of 77 specimen strips. Strips were subjected to uniaxial extension until failure. Sections from approximately the strongest and weakest specimen strips were studied histologically and histochemically. From the load-extension data, failure tension, failure stress and failure strain were calculated. Rupture site characteristics such as location, arc length of rupture and orientation of rupture were also documented. Results: The failure tension, a measure of the tissue mechanical caliber was remarkably similar between ruptured and unruptured AAA (group mean +/- standard deviation of within-subject means: 11.2 +/- 2.3 versus 11.6 +/- 3.6 N/cin; p=0.866 by mixed model ANOVA). In post-hoc analysis, there was little difference between the groups in other measures of tissue mechanical caliber as well such as failure stress (95 +/- 28 versus 98 +/- 23 N/cm(2); p=0.870), failure strain (0.39 +/- 0.09 versus 0.36 +/- 0.09; p=0.705), wall thickness (1.7 +/- 0.4 versus 1.5 +/- 0.4 mm; p=0.470), and % coverage of collagen within tissue cross section (49.6 +/- 12.9% versus 60.8 +/- 9.6%; p=0.133). In the four ruptured AAA, primary rupture sites were on the lateral quadrants (two on left; one on left-posterior; one on right). Remarkably, all rupture lines had a longitudinal orientation and ranged from 1 to 6 cm in length. Conclusion: The findings are not consistent with the hypothesis that ruptured aortic aneurysms are globally weaker than unruptured ones. (C) 2011 Elsevier Ltd. All rights reserved.