918 resultados para Television -- Antennas -- Design and construction -- Data processing
Resumo:
How does the work of designers impact on the safety of operatives at the construction site? Safety research and policy emphasize the importance of designing for safe construction, yet the interface between design and construction is poorly understood: accidents have multiple causes making it hard to establish causal links between design choices and safety outcomes. An in-depth case study of a major station project examines how professionals on the construction site perceive and manage the safety challenges of a building design. Analyses reveal understandings that, on the project studied, design has an impact on safety because of: (1) the timing of design work, where the volume of late design changes increased the difficulty of planning safe procedures, e.g. for working at height, lifting heavy items, refurbishing and demolishing old buildings; and (2) inputs from design stakeholders with insufficient practical knowledge of construction and operation required unplanned work-arounds, e.g. to coordinate different sub-systems, provide maintenance access, and manage loads during construction. These findings suggest that safety suffers where projects are under-designed, and that alongside regulation, there is a need for robust management attention to the contractual structures, incentives, processes and tools that enable clients and designers to understand material practices of construction and operation.
Resumo:
This article presents a study examining how narrative structure and narrative complexity might influence the performance of second language learners. Forty learners of English in London and sixty learners in Teheran were asked to retell cartoon stories from picture prompts. Each performed two of four narrative tasks that had different degrees of narrative structure (loose or tight) and of storyline complexity (with or without background events). Results support the findings of previous research that tight task structure is connected to increased accuracy and that narratives involving background information give rise to more complex syntax. A comparison of the data from the London and Teheran cohorts showed that the learners in London used significantly more complex syntax and diverse vocabulary even though they did not differ from the Teheran learners in other performance dimensions.
Resumo:
This paper explores the mapping of the environmental assessment process onto design and construction processes. A comparative case study method is used to identify and account for variations in the ‘fit’ between these two processes. The analysis compares eight BREEAM projects (although relevant to LEED, GreenStar, etc.) and distinguishes project-level characteristics and dynamics. Drawing on insights from literature on sustainable construction and assessment methods, an analytic framework is developed to examine the effect of clusters of project and assessment level elements on different types of fit (tight, punctual and bolt-on). Key elements distinguishing between types include: prior working experience with project team members, individual commitment to sustainable construction, experience with sustainable construction, project continuity, project-level ownership of the assessment process, and the nature and continuity of assessor involvement. Professionals with ‘sustainable’ experience used BREEAM judiciously to support their designs (along with other frameworks), but less committed professionals tended to treat it purely as an assessment method. More attention needs to be paid to individual levels of engagement with, and understanding of, sustainability in general (rather than knowledge of technical solutions to individual credits), to ownership of the assessment process and to the potential effect of discontinuities at the project level on sustainable design.
Resumo:
Expert systems have been increasingly popular for commercial importance. A rule based system is a special type of an expert system, which consists of a set of ‘if-then‘ rules and can be applied as a decision support system in many areas such as healthcare, transportation and security. Rule based systems can be constructed based on both expert knowledge and data. This paper aims to introduce the theory of rule based systems especially on categorization and construction of such systems from a conceptual point of view. This paper also introduces rule based systems for classification tasks in detail.
Resumo:
Improving lifestyle behaviours has considerable potential for reducing the global burden of non-communicable diseases, promoting better health across the life-course and increasing well-being. However, realising this potential will require the development, testing and implementation of much more effective behaviour change interventions than are used conventionally. Therefore, the aim of this study was to conduct a multi-centre, web-based, proof-of-principle study of personalised nutrition (PN) to determine whether providing more personalised dietary advice leads to greater improvements in eating patterns and health outcomes compared to conventional population-based advice. A total of 5,562 volunteers were screened across seven European countries; the first 1,607 participants who fulfilled the inclusion criteria were recruited into the trial. Participants were randomly assigned to one of the following intervention groups for a 6-month period: Level 0-control group-receiving conventional, non-PN advice; Level 1-receiving PN advice based on dietary intake data alone; Level 2-receiving PN advice based on dietary intake and phenotypic data; and Level 3-receiving PN advice based on dietary intake, phenotypic and genotypic data. A total of 1,607 participants had a mean age of 39.8 years (ranging from 18 to 79 years). Of these participants, 60.9 % were women and 96.7 % were from white-European background. The mean BMI for all randomised participants was 25.5 kg m(-2), and 44.8 % of the participants had a BMI ≥ 25.0 kg m(-2). Food4Me is the first large multi-centre RCT of web-based PN. The main outcomes from the Food4Me study will be submitted for publication during 2015.
Resumo:
Wireless Sensor Networks (WSNs) have been an exciting topic in recent years. The services offered by a WSN can be classified into three major categories: monitoring, alerting, and information on demand. WSNs have been used for a variety of applications related to the environment (agriculture, water and forest fire detection), the military, buildings, health (elderly people and home monitoring), disaster relief, and area or industrial monitoring. In most WSNs tasks like processing the sensed data, making decisions and generating emergency messages are carried out by a remote server, hence the need for efficient means of transferring data across the network. Because of the range of applications and types of WSN there is a need for different kinds of MAC and routing protocols in order to guarantee delivery of data from the source nodes to the server (or sink). In order to minimize energy consumption and increase performance in areas such as reliability of data delivery, extensive research has been conducted and documented in the literature on designing energy efficient protocols for each individual layer. The most common way to conserve energy in WSNs involves using the MAC layer to put the transceiver and the processor of the sensor node into a low power, sleep state when they are not being used. Hence the energy wasted due to collisions, overhearing and idle listening is reduced. As a result of this strategy for saving energy, the routing protocols need new solutions that take into account the sleep state of some nodes, and which also enable the lifetime of the entire network to be increased by distributing energy usage between nodes over time. This could mean that a combined MAC and routing protocol could significantly improve WSNs because the interaction between the MAC and network layers lets nodes be active at the same time in order to deal with data transmission. In the research presented in this thesis, a cross-layer protocol based on MAC and routing protocols was designed in order to improve the capability of WSNs for a range of different applications. Simulation results, based on a range of realistic scenarios, show that these new protocols improve WSNs by reducing their energy consumption as well as enabling them to support mobile nodes, where necessary. A number of conference and journal papers have been published to disseminate these results for a range of applications.
Resumo:
The purpose of this study was to evaluate the accuracy of electronic apex locators Digital Signal Processing (DSP) and ProPex, for root canal length determination in primary teeth. Fifteen primary molars (a total of 34 root canals) were divided into two groups: Group I - without physiological resorption (n = 16); and Group II - with physiological resorption (n = 18). The length of each canal was measured by introducing a file until its tip was visible and then it was retracted 1 mm. For electronic measurement, the devices were set to 1 mm short of the apical resorption. The data were analysed statistically using the intraclass correlation coefficient (ICC). Results showed that the ICC was high for both electronic apex locators in all situations - with (ICC: DSP = 0.82 and Propex = 0.89) or without resorption (ICC: DSP = 0.92 and Propex = 0.90). Both apex locators were extremely accurate in determining the working length in primary teeth, both with or without physiological resorption.
Resumo:
Felice Gigante a graduate from the New York Trade School Electronics program works on a machine in his job as Data Processing Customer Engineer for the International Business Machines Corp. Original caption reads, "Felice Gigante - Electronices, International Business Machines Corp." Black and white photograph with caption glued to reverse.
Resumo:
One of the main aims of this thesis is to design an optimized commercial Photovoltaic (PV) system in Barbados from several variables such as racking type, module type and inverter type based on practicality, technical performance as well as financial returns to the client. Detailed simulations are done in PVSYST and financial models are used to compare different systems and their viability. Once the preeminent system is determined from a financial and performance perspective a detailed design is done using PVSYST and AutoCAD to design the most optimal PV system for the customer. In doing so, suitable engineering drawings are generated which are detailed enough for construction of the system. Detailed cost with quotes from relevant manufacturers, suppliers and estimators become instrumental in determining Balance of System Costs in addition to total project cost. The final simulated system is suggested with a PV capacity of 425kW and an inverter output of 300kW resulting in an array oversizing of 1.42. The PV system has a weighted Performance Ratio of 77 %, a specific yield of 1467 kWh/kWp and a projected annual production of 624 MWh/yr. This system is estimated to offset approximately 28 % of Carlton’s electrical load annually. Over the course of 20 years the PV system is projected to produce electricity at a cost of $0.201USD/kWh which is significantly lower than the $0.35 USD/kWh paid to the utility at the time of writing this thesis. Due to the high cost of electricity on the island, an attractive Feed-In-Tariff is not necessary to warrant the installation of a commercial System which over a lifetime which produces electricity at less than 60% of the cost to the user purchasing electricity from the utility. A simple payback period of 5.4 years, a return on investment of 17 % without incentives, in addition to an estimated diversion of 6840 barrels of oil or 2168 tonnes of CO2 further provides compelling justification for the installation of a commercial Photovoltaic System not only on Carlton A-1 Supermarket, but also island wide as well as regionally where most electricity supplies are from imported fossil fuels.
Resumo:
This thesis focuses on the adaptation of formal education to people’s technology- use patterns, theirtechnology-in-practice, where the ubiquitous use of mobile technologies is central. The research question is: How can language learning practices occuring in informal learning environments be effectively integrated with formal education through the use of mobile technology? The study investigates the technical, pedagogical, social and cultural challenges involved in a design science approach. The thesis consists of four studies. The first study systematises MALL (mobile-assisted language learning) research. The second investigates Swedish and Chinese students’ attitudes towards the use of mobile technology in education. The third examines students’ use of technology in an online language course, with a specific focus on their learning practices in informal learning contexts and their understanding of how this use guides their learning. Based on the findings, a specifically designed MALL application was built and used in two courses. Study four analyses the app use in terms of students’ perceived level of self-regulation and structuration. The studies show that technology itself plays a very important role in reshaping peoples’ attitudes and that new learning methods are coconstructed in a sociotechnical system. Technology’s influence on student practices is equally strong across borders. Students’ established technologies-in-practice guide the ways they approach learning. Hence, designing effective online distance education involves three interrelated elements: technology, information, and social arrangements. This thesis contributes to mobile learning research by offering empirically and theoretically grounded insights that shift the focus from technology design to design of information systems.
Resumo:
This article presents a detailed study of the application of different additive manufacturing technologies (sintering process, three-dimensional printing, extrusion and stereolithographic process), in the design process of a complex geometry model and its moving parts. The fabrication sequence was evaluated in terms of pre-processing conditions (model generation and model STL SLI), generation strategy and physical model post-processing operations. Dimensional verification of the obtained models was undertook by projecting structured light (optical scan), a relatively new technology of main importance for metrology and reverse engineering. Studies were done in certain manufacturing time and production costs, which allowed the definition of an more comprehensive evaluation matrix of additive technologies.
Resumo:
The Compact Muon Solenoid (CMS) detector is described. The detector operates at the Large Hadron Collider (LHC) at CERN. It was conceived to study proton-proton (and lead-lead) collisions at a centre-of-mass energy of 14 TeV (5.5 TeV nucleon-nucleon) and at luminosities up to 10(34)cm(-2)s(-1) (10(27)cm(-2)s(-1)). At the core of the CMS detector sits a high-magnetic-field and large-bore superconducting solenoid surrounding an all-silicon pixel and strip tracker, a lead-tungstate scintillating-crystals electromagnetic calorimeter, and a brass-scintillator sampling hadron calorimeter. The iron yoke of the flux-return is instrumented with four stations of muon detectors covering most of the 4 pi solid angle. Forward sampling calorimeters extend the pseudo-rapidity coverage to high values (vertical bar eta vertical bar <= 5) assuring very good hermeticity. The overall dimensions of the CMS detector are a length of 21.6 m, a diameter of 14.6 m and a total weight of 12500 t.
Resumo:
A 160 mm bore, 7 T split-pair magnet was constructed and tested aiming to mineral processing through HGMS (high gradient magnetic separation) or HCMS (helical channel magnetic separation.) This work describes the design and test results of the pair of coils operating under current in parallel mode. In the case of antiparallel current mode large repulsive force between coils is generated and a strong magnetic field gradient outside the magnet is created. A continuous magnetic separation system made with a helical channel magnetic separator for application in TiO2 processing is analysed.
Resumo:
Processing efficiency theory predicts that anxiety reduces the processing capacity of working memory and has detrimental effects on performance. When tasks place little demand on working memory, the negative effects of anxiety can be avoided by increasing effort. Although performance efficiency decreases, there is no change in performance effectiveness. When tasks impose a heavy demand on working memory, however, anxiety leads to decrements in efficiency and effectiveness. These presumptions were tested using a modified table tennis task that placed low (LWM) and high (HWM) demands on working memory. Cognitive anxiety was manipulated through a competitive ranking structure and prize money. Participants' accuracy in hitting concentric circle targets in predetermined sequences was taken as a measure of performance effectiveness, while probe reaction time (PRT), perceived mental effort (RSME), visual search data, and arm kinematics were recorded as measures of efficiency. Anxiety had a negative effect on performance effectiveness in both LWM and HWM tasks. There was an increase in frequency of gaze and in PRT and RSME values in both tasks under high vs. low anxiety conditions, implying decrements in performance efficiency. However, participants spent more time tracking the ball in the HWM task and employed a shorter tau margin when anxious. Although anxiety impaired performance effectiveness and efficiency, decrements in efficiency were more pronounced in the HWM task than in the LWM task, providing support for processing efficiency theory.
Resumo:
The necessity of adapting the standardized fan models to conditions of higher temperature has emerged due to the growth of concerning referring to the consequences of the gas expelling after the Mont Blanc tunnel accident in Italy and France, where even though, with 100 fans in operation, 41 people died. However, since then, the defied solutions have pointed to aerodynamic disadvantages or have seemed nonappropriate in these conditions. The objective of this work is to present an alternative to the market standard fans considering a new technology in constructing blades. This new technology introduces the use of the stainless steel AISI 409 due to its good adaptation to temperatures higher than 400°C, particularly exposed to temperatures of gas exhaust from tunnels in fire situation. Furthermore, it presents a very good resistance to corrosion and posterior welding and pressing, due to its alloyed elements. The innovation is centered in the process of a deep drawing of metallic shells and posterior welding, in order to keep the ideal aerodynamic superficies for the fan ideal performance. On the other hand, the finite element method, through the elasto-plastic software COSMOS permitted the verification of the thickness and structural stability of the blade in relation to the aerodynamic efforts established in the project. In addition, it is not advisable the fabrication of blades with variable localized thickness not even, non-uniform ones, due to the verified concentration of tensions and the difficulties observed in the forming. In this way, this study recommends the construction of blades with uniform variations of thickness. © 2007 Springer.