946 resultados para Technology Readiness Level
Resumo:
Turtle excluder devices (TEDs) are being trialed on a voluntary basis in many Australian prawn (shrimp) trawl fisheries to reduce sea turtle captures. Analysis of TED introductions into shrimp trawl fisheries of the United States provided major insights into why conflicts occurred between shrimpers, conservationists, and government agencies. A conflict over the introduction and subsequent regulation of TEDs occurred because the problem and the solution were perceived differently by the various stakeholders. Attempts to negotiate and mediate the conflict broke down, resulting in litigation against the U.S. government by conservationists and shrimpers. Litigation was not an efficient resolution to the sea turtle-TED-trawl conflict but it appears that litigation was the only remaining path of resolution once the issue became polarized. We review two major Australian trawl fisheries to identify any significant differences in circumstances that may affect TED acceptance. Australian trawl fisheries are structured differently and good communication occurs between industry and researchers. TEDs are being introduced as mature technology. Furthermore, bycatch issues are of increasing concern to all stakeholders. These factors, combined with insights derived from previous conflicts concerning TEDs in the United Stares, increase the possibilities that TEDs will be introduced to Australian fishers with better acceptance.
Resumo:
The quantum trajectories method is illustrated for the resonance fluorescence of a two-level atom driven by a multichromatic field. We discuss the method for the time evolution of the fluorescence intensity in the presence of bichromatic and trichromatic driving fields. We consider the special case wherein one multichromatic field component is strong and resonant with the atomic transition whereas the other components are much weaker and arbitrarily detuned from the atomic resonance. We find that the phase-dependent modulations of the Rabi oscillations, recently observed experimentally [Q. Wu, D. J. Gauthier, and T. W. Mossberg, Phys. Rev. A 49, R1519 (1994)] for the special case when the weaker component of a bichromatic driving field is detuned from the atomic resonance by the strong-field Rabi frequency, appear also for detunings close to the subharmonics of the Rabi frequency. Furthermore, we show that for the atom initially prepared in one of the dressed states of the strong field component the modulations are not sensitive to the phase. We extend the calculations to the case of a trichromatic driving field and find that apart from the modulations of the amplitude there is a modulation of the frequency of the Rabi oscillations. Moreover, the time evolution of the fluorescence intensity depends on the phase regardless of the initial conditions and a phase-dependent suppression of the Rabi oscillations can be observed when the sideband fields are tuned to the subharmonics of the strong-field Rabi frequency. [S1050-2947(98)03501-X].
Resumo:
We study the index of refraction of a two-level atom replacing the usually applied coherent driving fields by a squeezed vacuum field. This system can produce a large index of refraction accompanied by vanishing absorption when the carrier frequency of the squeezed vacuum is detuned from the atomic resonance. (C) 1998 Elsevier Science B.V.
Resumo:
The modification of the statistical properties of vacuum fluctuations, via quadrature squeezing, can dramatically reduce the absorptive and dispersive properties of two-level atoms. We show that for some range of parameter values the system exhibits zero absorption accompanied by zero dispersion of the probe field. This complete transparency is attributed to the coherent population oscillations induced by the squeezed vacuum.
Resumo:
The stationary lineshape of a two-level atom driven by low-intensity narrow-bandwidth squeezed light is shown to exhibit significant differences in behaviour compared to the lineshape for broadband squeezed light. We find that for narrow-bandwidth squeezed light the lineshape is composed of two Lorentzians whose amplitudes depend on the squeezing correlations. Moreover, one of the Lorentzians has a negative weight which leads to narrowing of the line. These features are absent in the broadband case, where the stationary lineshape is the same as for a thermal field. (C) 1998 Elsevier Science B.V.
Resumo:
The Mellow and Autler-Townes probe absorption spectra of a three-level atom in a cascade configuration with the lower transition coherently driven and also coupled to a narrow bandwidth squeezed-vacuum field are studied. Analytical studies of the modifications caused by the finite squeezed-vacuum bandwidth to the spectra are made for the case when the Rabi frequency of the driving field is much larger than the natural linewidth. The squeezed vacuum center frequency and the driving laser frequency are assumed equal. We show that the spectral features depend on the bandwidth of a squeezed vacuum field and whether the sources of the squeezing field are degenerate (DPA) or nondegenerate (NDPA) parametric amplifiers. In a broadband or narrow bandwidth squeezed vacuum generated by a NDPA, the central component of the Mellow spectrum can be significantly narrower than that in the normal vacuum. When the source of the squeezed vacuum is a DPA, the central feature is insensitive to squeezing. The Rabi sidebands, however, can be significantly narrowed only in the squeezed vacuum produced by the DPA. The two lines of the Autler-Townes absorption spectrum can be narrowed only in a narrow bandwidth squeezed vacuum, whereas they are independent of the phase and are always broadened in a broadband squeezed vacuum.
Resumo:
We study the behavior of a two-level atom that is driven by a bichromatic field consisting of a strong resonant component and a weaker tunable component. In addition to the splitting of the energy levels (the multiphoton AC Stark effect), we find that the weaker component also shifts the subharmonic resonances, an effect we attribute to a dynamic Stark shift. When the weaker component is tuned to a shifted resonance, no fluorescence occurs at either the frequency of the strong component or the three-photon mixing frequency. Results are obtained with numerical techniques and explained in terms of the dressed-atom model of the system. (C) 1998 Optical Society of America [S0740-3224(98)01508-2] OCIS codes: 270.4180, 270.6620, 270.0270.
Resumo:
We study the interaction of a two-level atom with two lasers of different frequencies and amplitudes: a strong laser of Rabi frequency 2 Ohm(1) on resonance with the atomic transition, and a weaker laser detuned by subharmonics (2 Ohm(1)/n) of the Rabi frequency of the first. We find that under these conditions the second laser couples the dressed states created by the first in an n-photon process, resulting in doubly dressed states and in a ''multiphoton ac Stark'' effect. We calculate the eigenstates of the doubly dressed atom and their energies, and illustrate the role of this multiphoton ac Stark effect in its fluorescence, absorption, and Autler-Townes spectra. [S1050-2947(98)07607-0].
Resumo:
The resonance fluorescence of a two-level atom driven by a coherent laser field and damped by a finite bandwidth squeezed vacuum is analysed. We extend the Yeoman and Barnett technique to a non-zero detuning of the driving field from the atomic resonance and discuss the role of squeezing bandwidth and the detuning in the level shifts, widths and intensities of the spectral lines. The approach is valid for arbitrary values of the Rabi frequency and detuning but for the squeezing bandwidths larger than the natural linewidth in order to satisfy the Markoff approximation. The narrowing of the spectral lines is interpreted in terms of the quadrature-noise spectrum. We find that, depending on the Rabi frequency, detuning and the squeezing phase, different factors contribute to the line narrowing. For a strong resonant driving field there is no squeezing in the emitted field and the fluorescence spectrum exactly reveals the noise spectrum. In this case the narrowing of the spectral lines arises from the noise reduction in the input squeezed vacuum. For a weak or detuned driving field the fluorescence exhibits a large squeezing and, as a consequence, the spectral lines have narrowed linewidths. Moreover, the fluorescence spectrum can be asymmetric about the central frequency despite the symmetrical distribution of the noise. The asymmetry arises from the absorption of photons by the squeezed vacuum which reduces the spontaneous emission. For an appropriate choice of the detuning some of the spectral lines can vanish despite that there is no population trapping. Again this process can be interpreted as arising from the absorption of photons by the squeezed vacuum. When the absorption is large it may compensate the spontaneous emission resulting in the vanishing of the fluorescence lines.
Resumo:
Squeezed light is of interest as an example of a non-classical state of the electromagnetic field and because of its applications both in technology and in fundamental quantum physics. This review concentrates on one aspect of squeezed light, namely its application in atomic spectroscopy. The general properties, detection and application of squeezed light are first reviewed. The basic features of the main theoretical methods (master equations, quantum Langevin equations, coupled systems) used to treat squeezed light spectroscopy are then outlined. The physics of squeezed light interactions with atomic systems is dealt with first for the simpler case of two-level atoms and then for the more complex situation of multi-level atoms and multi-atom systems. Finally the specific applications of squeezed light spectroscopy are reviewed.
Resumo:
Australia struggles to achieve economic competitiveness, prevent expansion of the trade deficit and develop value-added production despite applications of policy strategies from protectionism to trade liberalisation. This article argues that these problems were emerging at the turn of the century, and that an investigation of music technology manufacturing in the first two decades of this century reveals fundamental problems in the conduct of relevant policy analysis. Analysis has focused on the trade or technology gap which is only symptomatic of an underlying knowledge gap. The article calls for a knowledge policy approach which can allow protection without the negative effects of isolation from global markets and without having to resort to unworkable utopian free-trade dogma. A shift of focus from a 'goods traded' view to a knowledge transaction (or diffusion) perspective is advocated.
Resumo:
We describe a strategy for the selection and amplification of foreign gene expression in Chinese hamster ovary (CHO) cells employing a metallothionein gene-containing expression vector. This report describes an amplification procedure that results in an enrichment of clones exhibiting high levels of recombinant protein production and reduces the labour required for screening recombinant cell lines.