911 resultados para Technicolor and Composite Models


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The GxE interaction only became widely discussed from evolutionary studies and evaluations of the causes of behavioral changes of species cultivated in environments. In the last 60 years, several methodologies for the study of adaptability and stability of genotypes in multiple environments trials were developed in order to assist the breeder's choice regarding which genotypes are more stable and which are the most suitable for the crops in the most diverse environments. The methods that use linear regression analysis were the first to be used in a general way by breeders, followed by multivariate analysis methods and mixed models. The need to identify the genetic and environmental causes that are behind the GxE interaction led to the development of new models that include the use of covariates and which can also include both multivariate methods and mixed modeling. However, further studies are needed to identify the causes of GxE interaction as well as for the more accurate measurement of its effects on phenotypic expression of varieties in competition trials carried out in genetic breeding programs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Química e Bioquímica

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transport is an essential sector in modern societies. It connects economic sectors and industries. Next to its contribution to economic development and social interconnection, it also causes adverse impacts on the environment and results in health hazards. Transport is a major source of ground air pollution, especially in urban areas, and therefore contributing to the health problems, such as cardiovascular and respiratory diseases, cancer, and physical injuries. This thesis presents the results of a health risk assessment that quantifies the mortality and the diseases associated with particulate matter pollution resulting from urban road transport in Hai Phong City, Vietnam. The focus is on the integration of modelling and GIS approaches in the exposure analysis to increase the accuracy of the assessment and to produce timely and consistent assessment results. The modelling was done to estimate traffic conditions and concentrations of particulate matters based on geo-references data. A simplified health risk assessment was also done for Ha Noi based on monitoring data that allows a comparison of the results between the two cases. The results of the case studies show that health risk assessment based on modelling data can provide a much more detail results and allows assessing health impacts of different mobility development options at micro level. The use of modeling and GIS as a common platform for the integration of different assessments (environmental, health, socio-economic, etc.) provides various strengths, especially in capitalising on the available data stored in different units and forms and allows handling large amount of data. The use of models and GIS in a health risk assessment, from a decision making point of view, can reduce the processing/waiting time while providing a view at different scales: from micro scale (sections of a city) to a macro scale. It also helps visualising the links between air quality and health outcomes which is useful discussing different development options. However, a number of improvements can be made to further advance the integration. An improved integration programme of the data will facilitate the application of integrated models in policy-making. Data on mobility survey, environmental monitoring and measuring must be standardised and legalised. Various traffic models, together with emission and dispersion models, should be tested and more attention should be given to their uncertainty and sensitivity

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research is titled “The Future of Airline Business Models: Which Will Win?” and it is part of the requirements for the award of a Masters in Management from NOVA BSE and another from Luiss Guido Carlo University. The purpose is to elaborate a complete market analysis of the European Air Transportation Industry in order to predict which Airlines, strategies and business models may be successful in the next years. First, an extensive literature review of the business model concept has been done. Then, a detailed overview of the main European Airlines and the strategies that they have been implementing so far has been developed. Finally, the research is illustrated with three case studies

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The design of anchorage blisters of internal continuity post-tensioning tendons of bridges built by the cantilever method, presents some peculiarities, not only because they are intermediate anchorages but also because these anchorages are located in blisters, so the prestressing force has to be transferred from the blister the bottom slab and web of the girder. The high density of steel reinforcement in anchorage blisters is the most common reason for problems with concrete cast in situ, resulting in zones with low concrete compacity, leading to concrete crushing failures under the anchor plates. A solution may involve improving the concrete compression and tensile strength. To meet these requirements a high-performance fibre reinforced self-compacting mix- ture (HPFRC) was used in anchorage corner blisters of post-tensioning tendons, reducing the concrete cross-section and decreasing the reinforcement needed. To assess the ultimate capacity and the adequate serviceability of the local anchorage zone after reducing the minimum concrete cross-section and the confining reinforcement, specified by the anchorage device supplier for the particular tendon, load transfer tests were performed. To investigate the behaviour of anchorage blisters regarding the transmission of stresses to the web and the bottom slab of the girder, and the feasibility of using high performance concrete only in the blister, two half scale models of the inferior corner of a box girder existing bridge were studied: a reference specimen of ordinary reinforced concrete and a HPFRC blister specimen. The design of the reinforcement was based in the tensile forces obtained on strut-and-tie models. An experimental program was carried out to assess the models used in design and to study the feasibility of using high performance concrete only in the blister, either with casting in situ, or with precast solutions. A non-linear finite element analysis of the tested specimens was also performed and the results compared.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neurological disorders are a major concern in modern societies, with increasing prevalence mainly related with the higher life expectancy. Most of the current available therapeutic options can only control and ameliorate the patients’ symptoms, often be-coming refractory over time. Therapeutic breakthroughs and advances have been hampered by the lack of accurate central nervous system (CNS) models. The develop-ment of these models allows the study of the disease onset/progression mechanisms and the preclinical evaluation of novel therapeutics. This has traditionally relied on genetically engineered animal models that often diverge considerably from the human phenotype (developmentally, anatomically and physiologically) and 2D in vitro cell models, which fail to recapitulate the characteristics of the target tissue (cell-cell and cell-matrix interactions, cell polarity). The in vitro recapitulation of CNS phenotypic and functional features requires the implementation of advanced culture strategies that enable to mimic the in vivo struc-tural and molecular complexity. Models based on differentiation of human neural stem cells (hNSC) in 3D cultures have great potential as complementary tools in preclinical research, bridging the gap between human clinical studies and animal models. This thesis aimed at the development of novel human 3D in vitro CNS models by integrat-ing agitation-based culture systems and a wide array of characterization tools. Neural differentiation of hNSC as 3D neurospheres was explored in Chapter 2. Here, it was demonstrated that human midbrain-derived neural progenitor cells from fetal origin (hmNPC) can generate complex tissue-like structures containing functional dopaminergic neurons, as well as astrocytes and oligodendrocytes. Chapter 3 focused on the development of cellular characterization assays for cell aggregates based on light-sheet fluorescence imaging systems, which resulted in increased spatial resolu-tion both for fixed samples or live imaging. The applicability of the developed human 3D cell model for preclinical research was explored in Chapter 4, evaluating the poten-tial of a viral vector candidate for gene therapy. The efficacy and safety of helper-dependent CAV-2 (hd-CAV-2) for gene delivery in human neurons was evaluated, demonstrating increased neuronal tropism, efficient transgene expression and minimal toxicity. The potential of human 3D in vitro CNS models to mimic brain functions was further addressed in Chapter 5. Exploring the use of 13C-labeled substrates and Nucle-ar Magnetic Resonance (NMR) spectroscopy tools, neural metabolic signatures were evaluated showing lineage-specific metabolic specialization and establishment of neu-ron-astrocytic shuttles upon differentiation. Chapter 6 focused on transferring the knowledge and strategies described in the previous chapters for the implementation of a scalable and robust process for the 3D differentiation of hNSC derived from human induced pluripotent stem cells (hiPSC). Here, software-controlled perfusion stirred-tank bioreactors were used as technological system to sustain cell aggregation and dif-ferentiation. The work developed in this thesis provides practical and versatile new in vitro ap-proaches to model the human brain. Furthermore, the culture strategies described herein can be further extended to other sources of neural phenotypes, including pa-tient-derived hiPSC. The combination of this 3D culture strategy with the implemented characterization methods represents a powerful complementary tool applicable in the drug discovery, toxicology and disease modeling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Propolis is a chemically complex biomass produced by honeybees (Apis mellifera) from plant resins added of salivary enzymes, beeswax, and pollen. The biological activities described for propolis were also identified for donor plants resin, but a big challenge for the standardization of the chemical composition and biological effects of propolis remains on a better understanding of the influence of seasonality on the chemical constituents of that raw material. Since propolis quality depends, among other variables, on the local flora which is strongly influenced by (a)biotic factors over the seasons, to unravel the harvest season effect on the propolis chemical profile is an issue of recognized importance. For that, fast, cheap, and robust analytical techniques seem to be the best choice for large scale quality control processes in the most demanding markets, e.g., human health applications. For that, UV-Visible (UV-Vis) scanning spectrophotometry of hydroalcoholic extracts (HE) of seventy-three propolis samples, collected over the seasons in 2014 (summer, spring, autumn, and winter) and 2015 (summer and autumn) in Southern Brazil was adopted. Further machine learning and chemometrics techniques were applied to the UV-Vis dataset aiming to gain insights as to the seasonality effect on the claimed chemical heterogeneity of propolis samples determined by changes in the flora of the geographic region under study. Descriptive and classification models were built following a chemometric approach, i.e. principal component analysis (PCA) and hierarchical clustering analysis (HCA) supported by scripts written in the R language. The UV-Vis profiles associated with chemometric analysis allowed identifying a typical pattern in propolis samples collected in the summer. Importantly, the discrimination based on PCA could be improved by using the dataset of the fingerprint region of phenolic compounds ( = 280-400m), suggesting that besides the biological activities of those secondary metabolites, they also play a relevant role for the discrimination and classification of that complex matrix through bioinformatics tools. Finally, a series of machine learning approaches, e.g., partial least square-discriminant analysis (PLS-DA), k-Nearest Neighbors (kNN), and Decision Trees showed to be complementary to PCA and HCA, allowing to obtain relevant information as to the sample discrimination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The authors also acknowledge Centre for Textile Science and Technology (University of Minho) and FIBRENAMICS PLATFORMfor providing required conditions for this research. Sincere thanks are also due to Mr. Pedro Samuel Leite and Mr. Carlos Jesus for their kind help in sample preparation and testing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fiber membranes prepared from jute fragments can be valuable, low cost, and renewable. They have broad application prospects in packing bags, geotextiles, filters, and composite reinforcements. Traditionally, chemical adhesives have been used to improve the properties of jute fiber membranes. A series of new laccase, laccase/mediator systems, and multi-enzyme synergisms were attempted. After the laccase treatment of jute fragments, the mechanical properties and surface hydrophobicity of the produced fiber membranes increased because of the cross-coupling of lignins with ether bonds mediated by laccase. The optimum conditions were a buffer pH of 4.5 and an incubation temperature of 60 °C with 0.92 U/mL laccase for 3 h. Laccase/guaiacol and laccase/alkali lignin treatments resulted in remarkable increases in the mechanical properties; in contrast, the laccase/2,2-azino-bis-(3-ethylthiazoline-6-sulfonate) (ABTS) and laccase/2,6-dimethoxyphenol treatments led to a decrease. The laccase/ guaiacol system was favorable to the surface hydrophobicity of jute fiber membranes. However, the laccase/alkali lignin system had the opposite effect. Xylanase/laccase and cellulase/laccase combined treatments were able to enhance both the mechanical properties and the surface hydrophobicity of jute fiber membranes. Among these, cellulase/laccase treatment performed better; compared to mechanical properties, the surface hydrophobicity of the jute fiber membranes showed only a slight increase after the enzymatic multi-step processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese de Doutoramento em Ciências da Saúde

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese de Doutoramento em Ciências da Saúde

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The job of health professionals, including nurses, is considered inherently stressful (Lee & Wang, 2002; Rutledge et al., 2009), and thus it is important to improve and develop specific measures that are sensitive to the demands that health professionals face. This study analysed the psychometric properties of three instruments that focus on the professional experiences of nurses in aspects related to occupational stress, cognitive appraisal, and mental health issues. The evaluation protocol included the Stress Questionnaire for Health Professionals (SQHP; Gomes, 2014), the Cognitive Appraisal Scale (CAS; Gomes, Faria, & Gonçalves, 2013), and the General Health Questionnaire-12 (GHQ-12; Goldberg, 1972). Validity and reliability issues were considered with statistical analysis (i.e. confirmatory factor analysis, convergent validity, and composite reliability) that revealed adequate values for all of the instruments, namely, a six-factor structure for the SQHP, a five-factor structure for the CAS, and a two-factor structure for the GHQ-12. In conclusion, this study proposes three consistent instruments that may be useful for analysing nurses’ adaptation to work contexts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermal systems interchanging heat and mass by conduction, convection, radiation (solar and thermal ) occur in many engineering applications like energy storage by solar collectors, window glazing in buildings, refrigeration of plastic moulds, air handling units etc. Often these thermal systems are composed of various elements for example a building with wall, windows, rooms, etc. It would be of particular interest to have a modular thermal system which is formed by connecting different modules for the elements, flexibility to use and change models for individual elements, add or remove elements without changing the entire code. A numerical approach to handle the heat transfer and fluid flow in such systems helps in saving the full scale experiment time, cost and also aids optimisation of parameters of the system. In subsequent sections are presented a short summary of the work done until now on the orientation of the thesis in the field of numerical methods for heat transfer and fluid flow applications, the work in process and the future work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Zebrafish is a clinically-relevant model of heart regeneration. Unlike mammals, it has a remarkable heart repair capacity after injury, and promises novel translational applications. Amputation and cryoinjury models are key research tools for understanding injury response and regeneration in vivo. An understanding of the transcriptional responses following injury is needed to identify key players of heart tissue repair, as well as potential targets for boosting this property in humans. RESULTS: We investigated amputation and cryoinjury in vivo models of heart damage in the zebrafish through unbiased, integrative analyses of independent molecular datasets. To detect genes with potential biological roles, we derived computational prediction models with microarray data from heart amputation experiments. We focused on a top-ranked set of genes highly activated in the early post-injury stage, whose activity was further verified in independent microarray datasets. Next, we performed independent validations of expression responses with qPCR in a cryoinjury model. Across in vivo models, the top candidates showed highly concordant responses at 1 and 3 days post-injury, which highlights the predictive power of our analysis strategies and the possible biological relevance of these genes. Top candidates are significantly involved in cell fate specification and differentiation, and include heart failure markers such as periostin, as well as potential new targets for heart regeneration. For example, ptgis and ca2 were overexpressed, while usp2a, a regulator of the p53 pathway, was down-regulated in our in vivo models. Interestingly, a high activity of ptgis and ca2 has been previously observed in failing hearts from rats and humans. CONCLUSIONS: We identified genes with potential critical roles in the response to cardiac damage in the zebrafish. Their transcriptional activities are reproducible in different in vivo models of cardiac injury.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gas6 downregulates the activation state of macrophages and thereby their production of proinflammatory cytokines induced by various stimuli. We aimed to determine whether Gas6 is involved in sepsis. We measured Gas6 plasma levels in 13 healthy subjects, 29 patients with severe sepsis, and 18 patients with non-infectious inflammatory diseases. Gas6 level was higher in septic patients than in control groups (P 0.0001). The sensitivity and specificity of Gas6 levels to predict fatal outcome were 83% and 88%. We next investigated whether Gas6 affects cytokine production and outcome in experimental models of endotoxemia and peritonitis in wild-type (WT) and Gas6-/- mice. Circulating levels of Gas6 after LPS 25mg/kg i.p. peaked at 1 hour (P<0.001). Similarly, TNF- was higher in Gas6-/- than in WT mice 1 hour after LPS (P<0.05). Furthermore, 62 anti- and pro-inflammatory cytokines were quantified in plasma after LPS injection. Their levels were globally higher in Gas6-/- plasma after LPS, 47/62 cytokines being at least 50% higher in Gas6-/- than in WT plasma after 1 hour. Mortality induced by 25mg/kg LPS was 25% in WT versus 87% in Gas6-/- mice (P<0.05). LPS-induced mortality in Gas6 receptors Axl-/-, Tyro3-/- and Merkd was also enhanced when compared to WT mice (P<0.001). In peritonitis models (cecal ligation and puncture, CLP, and i.p. injection of E. coli), Gas6 plasma levels increased and remained elevated at least 24 hours. CLP increased mortality in Gas6-/- mice. Finally, we explored the role of Gas6 in LPS-treated macrophages. We found that Gas6 was released by LPS-stimulated WT macrophages and that Gas6-/- macrophages produced more TNF- and IL-6 than WT macrophages. Cytokine release by Gas6-/- macrophages was higher than by WT macrophages (cytokine array). Adjunction of recombinant Gas6 to the culture medium of Gas6-/- macrophages diminished the cytokine production to WT levels. In LPS-treated Gas6-/- macrophages, Akt and Erk1/2 phosphorylation was reduced whereas p38 and NF B activation was enhanced. Thus, in septic patients, elevated Gas6 levels were associated with fatal outcome. In mice, they raised in experimental endotoxemia and peritonitis models, and correlated also with sepsis severity. However, Gas6-/- mice survival in these models was reduced compared to WT. Gas6 secreted by macrophages in response to LPS activated Akt and restrained p38 and NF B activation, thereby dampening macrophage activation. Altogether these data suggest that, during endotoxemia, Gas6-/- mice phenotype resembles that of mice which have undergone PI3K inhibition, indicating that Gas6 is a major modulator of innate immunity.