976 resultados para TP53 mutations
Resumo:
Cystic fibrosis (CF) is the most common genetic disease among Caucasians and is rare among sub-Saharan Africans. The Brazilian population is not ethnically homogeneous but it is the result of three-way ethnic admixture of Europeans, Africans and Amerindians in varying proportions, depending on the region. In the present study, we investigated 33 patients who had been diagnosed and are currently under treatment for CF at the University Hospital João de Barros Barreto, Belém, Pará State. The molecular analysis for G542X, G551D and R553X mutations was performed by PCR followed by RFLP using BstNI, HincII and MboI, respectively, in polyacrylamide gel eletrophoresis and stained with AgNO3. ThedeltaF508 mutation (a deletion of 3 bp) was only analyzed by polyacrylamide gel electrophoresis and stained with AgNO3. Each sample was analyzed for regions of interest in the CFTR gene using amplified by PCR and specific primers. The deltaF508 and G551D mutations presented frequencies of 22.7 and 3%, respectively. In 74.3% of the remaining patients, none of the mutations investigated was found. The present study characterized in a sample of patients with an established clinical diagnosis of CF (asthma, repeated bronchopneumonia, disorders of nutritional status, etc.) the most frequent mutation ( deltaF508) in the North region of Brazil and is also the first report of the G551D mutation. In spite of the wide spectrum of CF mutations and the heterogeneous ethnic origin of the Amazon population, the molecular diagnosis is a helpful additional tool for the diagnosis and treatment of CF patients.
Resumo:
The WT1 transcription factor regulates SRY expression during the initial steps of the sex determination process in humans, activating a gene cascade leading to testis differentiation. In addition to causing Wilms' tumor, mutations in WT1 are often responsible for urogenital defects in men, while SRY mutations are mainly related to 46,XY pure gonadal dysgenesis. In order to evaluate their role in abnormal testicular organogenesis, we screened for SRY and WT1 gene mutations in 10 children with XY partial gonadal dysgenesis, 2 of whom with a history of Wilms' tumor. The open reading frame and 360 bp of the 5' flanking sequence of the SRY gene, and the ten exons and intron boundaries of the WT1 gene were amplified by PCR of genomic DNA. Single-strand conformation polymorphism was initially used for WT1 mutation screening. Since shifts in fragment migration were only observed for intron/exon 4, the ten WT1 exons from all patients were sequenced manually. No mutations were detected in the SRY 5' untranslated region or within SRY open-reading frame sequences. WT1 sequencing revealed one missense mutation (D396N) in the ninth exon of a patient who also had Wilms' tumor. In addition, two silent point mutations were found in the first exon including one described here for the first time. Some non-coding sequence variations were detected, representing one new (IVS4+85A>G) and two already described (-7ATG T>G, IVS9-49 T>C) single nucleotide polymorphisms. Therefore, mutations in two major genes required for gonadal development, SRY and WT1, are not responsible for XY partial gonadal dysgenesis.
Resumo:
Patients with chronic renal insufficiency (CRI) have reduced hemoglobin levels, mostly as a result of decreased kidney production of erythropoietin, but the relation between renal insufficiency and the magnitude of hemoglobin reduction has not been well defined. Hereditary hemochromatosis is an inherited disorder of iron metabolism. The importance of the association of hemochromatosis with treatment for anemia among patients with CRI has not been well described. We analyzed the frequency of the C282Y and H63D mutations in the HFE gene in 201 Brazilian individuals with CRI undergoing hemodialysis. The analysis of the effects of HFE mutations on iron metabolism and anemia with biochemical parameters was possible in 118 patients of this study (hemoglobin, hematocrit, ferritin levels, transferrin saturation, and serum iron). A C282Y heterozygous mutation was found in 7/201 (3.4%) and H63D homozygous and heterozygous mutation were found in 2/201 (1.0%) and 46/201 (22.9%), respectively. The allelic frequencies of the HFE mutations (0.017 for C282Y mutation and 0.124 for H63D mutation) did not differ between patients with CRI and healthy controls. Regarding the biochemical parameters, no differences were observed between HFE heterozygous and mutation-negative patients, although ferritin levels were not higher among patients with the H63D mutation (P = 0.08). From what we observed in our study, C282Y/H63D HFE gene mutations are not related to degrees of anemia or iron stores in CRI patients receiving intravenous iron supplementation (P > 0.10). Nevertheless, the present data suggest that the H63D mutation may have an important function as a modulating factor of iron overload in these patients.
Resumo:
Mitochondrial mutations are responsible for at least 1% of the cases of hereditary deafness, but the contribution of each mutation has not yet been defined in African-derived or native American genetic backgrounds. A total of 203 unselected hearing-impaired patients were screened for the presence of the mitochondrial mutation A1555G in the 12S rRNA gene and mutations in the tRNA Ser(UCN) gene in order to assess their frequency in the ethnically admixed Brazilian population. We found four individuals with A1555G mutation (2%), which is a frequency similar to those reported for European-derived populations in unselected samples. On the other hand, complete sequencing of the tRNA Ser(UCN) did not reveal reported pathogenic substitutions, namely A7445G, 7472insC, T7510C, or T7511C. Instead, other rare substitutions were found such as T1291C, A7569G, and G7444A. To evaluate the significance of these findings, 110 "European-Brazilians" and 190 "African-Brazilians" unrelated hearing controls were screened. The T1291C, A7569G and G7444A substitutions were each found in about 1% (2/190) of individuals of African ancestry, suggesting that they are probably polymorphic. Our results indicate that screening for the A1555G mutation is recommended among all Brazilian deaf patients, while testing for mutations in the tRNA Ser(UCN) gene should be considered only when other frequent deafness-causing mutations have been excluded or in the presence of a maternal transmission pattern.
Resumo:
When compared to other model organisms whose genome is sequenced, the number of mutations identified in the mouse appears extremely reduced and this situation seriously hampers our understanding of mammalian gene function(s). Another important consequence of this shortage is that a majority of human genetic diseases still await an animal model. To improve the situation, two strategies are currently used: the first makes use of embryonic stem cells, in which one can induce knockout mutations almost at will; the second consists of a genome-wide random chemical mutagenesis, followed by screening for mutant phenotypes and subsequent identification of the genetic alteration(s). Several projects are now in progress making use of one or the other of these strategies. Here, we report an original effort where we mutagenized BALB/c males, with the mutagen ethylnitrosourea. Offspring of these males were screened for dominant mutations and a three-generation breeding protocol was set to recover recessive mutations. Eleven mutations were identified (one dominant and ten recessives). Three of these mutations are new alleles (Otop1mlh, Foxn1sepe and probably rodador) at loci where mutations have already been reported, while 4 are new and original alleles (carc, eqlb, frqz, and Sacc). This result indicates that the mouse genome, as expected, is far from being saturated with mutations. More mutations would certainly be discovered using more sophisticated phenotyping protocols. Seven of the 11 new mutant alleles induced in our experiment have been localized on the genetic map as a first step towards positional cloning.
Resumo:
Hereditary hemochromatosis is a disorder of iron metabolism characterized by increased iron intake and progressive storage and is related to mutations in the HFE gene. Interactions between thalassemia and hemochromatosis may further increase iron overload. The ethnic background of the Brazilian population is heterogeneous and studies analyzing the simultaneous presence of HFE and thalassemia-related mutations have not been carried out. The aim of this study was to evaluate the prevalence of the H63D, S65C and C282Y mutations in the HFE gene among 102 individuals with alpha-thalassemia and 168 beta-thalassemia heterozygotes and to compare them with 173 control individuals without hemoglobinopathies. The allelic frequencies found in these three groups were 0.98, 2.38, and 0.29% for the C282Y mutation, 13.72, 13.70, and 9.54% for the H63D mutation, and 0, 0.60, and 0.87% for the S65C mutation, respectively. The chi-square test for multiple independent individuals indicated a significant difference among groups for the C282Y mutation, which was shown to be significant between the beta-thalassemia heterozygote and the control group by the Fisher exact test (P value = 0.009). The higher frequency of inheritance of the C282Y mutation in the HFE gene among beta-thalassemic patients may contribute to worsen the clinical picture of these individuals. In view of the characteristics of the Brazilian population, the present results emphasize the need to screen for HFE mutations in beta-thalassemia carriers.
Resumo:
Malignancy of pulmonary large cell carcinomas (LCC) increases from classic LCC through LCC with neuroendocrine morphology (LCCNM) to large cell neuroendocrine carcinomas (LCNEC). However, the histological classification has sometimes proved to be difficult. Because the malignancy of LCC is highly dependent on proteins with functions in the cell cycle, DNA repair, and apoptosis, p53 has been targeted as a potentially useful biological marker. p53 mutations in lung cancers have been shown to result in expression and protein expression also occurs in the absence of mutations. To validate the importance of both p53 protein expression (by immunostaining) and p53 gene mutations in lung LCC (by PCR-single strand conformational polymorphism analysis of exons 5, 6, 7, and 8) and to study their relationships with clinical factors and sub-classification we investigated the correlation of p53 abnormalities in 15 patients with LCC (5 classic LCC, 5 LCNEC, and 5 LCCNM) who had undergone resection with curative intent. Of these patients, 5/15 expressed p53 and none had mutant p53 sequences. There was a negative survival correlation with positive p53 immunostaining (P = 0.05). After adjustment for stage, age, gender, chemotherapy, radiotherapy, and histological subtypes by multivariate analysis, p53 expression had an independent impact on survival. The present study indicates that p53 assessment may provide an objective marker for the prognosis of LCC irrespective of morphological variants and suggests that p53 expression is important for outcome prediction in patients with the early stages of LCC. The results reported here should be considered to be initial results because tumors from only 15 patients were studied: 5 each from LCC, LCNEC and LCCNM. This was due to the rarity of these specific diseases.
Resumo:
TP53, a tumor suppressor gene, has a critical role in cell cycle, apoptosis and cell senescence and participates in many crucial physiological and pathological processes. Identification of TP53 polymorphism in older people and age-related diseases may provide an understanding of its physiology and pathophysiological role as well as risk factors for complex diseases. TP53 codon 72 (TP53:72) polymorphism was investigated in 383 individuals aged 66 to 97 years in a cohort from a Brazilian Elderly Longitudinal Study. We investigated allele frequency, genotype distribution and allele association with morbidities such as cardiovascular disease, type II diabetes, obesity, neoplasia, low cognitive level (dementia), and depression. We also determined the association of this polymorphism with serum lipid fractions and urea, creatinine, albumin, fasting glucose, and glycated hemoglobin levels. DNA was isolated from blood cells, amplified by PCR using sense 5'-TTGCCGTCCCAAGCAATGGATGA-3' and antisense 5'-TCTGGGAAGGGACAGAAGATGAC-3' primers and digested with the BstUI enzyme. This polymorphism is within exon 4 at nucleotide residue 347. Descriptive statistics, logistic regression analysis and Student t-test using the multiple comparison test were used. Allele frequencies, R (Arg) = 0.69 and P (Pro) = 0.31, were similar to other populations. Genotype distributions were within Hardy-Weinberg equilibrium. This polymorphism did not show significant association with any age-related disease or serum variables. However, R allele carriers showed lower HDL levels and a higher frequency of cardiovascular disease than P allele subjects. These findings may help to elucidate the physiopathological role of TP53:72 polymorphism in Brazilian elderly people.
Resumo:
The C/T-13910 mutation is the major factor responsible for the persistence of the lactase-phlorizin hydrolase (LCT) gene expression. Mutation G/A-22018 appears to be only in co-segregation with C/T-13910. The objective of the present study was to assess the presence of these two mutations in Brazilian individuals with and without lactose malabsorption diagnosed by the hydrogen breath test (HBT). Ten milk-tolerant and 10 milk-intolerant individuals underwent the HBT after oral ingestion of 50 g lactose (equivalent to 1 L of milk). Analyses for C/T-13910 and G/A-22018 mutations were performed using a PCR-based method. Primers were designed for this study based on the GenBank sequence. The CT/GA, CT/AA, and TT/AA genotypes (lactase persistence) were found in 10 individuals with negative HBT. The CC/GG genotype (lactase non-persistence) was found in 10 individuals, 9 of them with positive HBT results. There was a significant agreement between the presence of mutations in the LCT gene promoter and HBT results (kappa = -0.9, P < 0.001). The CT/AA genotype has not been described previously and seems to be related to lactase persistence. The present study showed a significant agreement between the occurrence of mutations G/A-22018 and C/T-13910 and lactose absorption in Brazilian subjects, suggesting that the molecular test used here could be proposed for the laboratory diagnosis of adult-type primary hypolactasia.
Resumo:
Gastric cancer is the forth most frequent malignancy and the second most common cause of cancer death worldwide. DNA methylation is the most studied epigenetic alteration, occurring through a methyl radical addition to the cytosine base adjacent to guanine. Many tumor genes are inactivated by DNA methylation in gastric cancer. We evaluated the DNA methylation status of ANAPC1, CDKN2A and TP53 by methylation-specific PCR in 20 diffuse- and 26 intestinal-type gastric cancer samples and 20 normal gastric mucosa in individuals from Northern Brazil. All gastric cancer samples were advanced stage adenocarcinomas. Gastric samples were surgically obtained at the João de Barros Barreto University Hospital, State of Pará, and were stored at -80°C before DNA extraction. Patients had never been submitted to chemotherapy or radiotherapy, nor did they have any other diagnosed cancer. None of the gastric cancer samples presented methylated DNA sequences for ANAPC1 and TP53. CDKN2A methylation was not detected in any normal gastric mucosa; however, the CDKN2A promoter was methylated in 30.4% of gastric cancer samples, with 35% methylation in diffuse-type and 26.9% in intestinal-type cancers. CDKN2A methylation was associated with the carcinogenesis process for ~30% diffuse-type and intestinal-type compared to non-neoplastic samples. Thus, ANAPC1 and TP53 methylation was probably not implicated in gastric carcinogenesis in our samples. CDKN2A can be implicated in the carcinogenesis process of only a subset of gastric neoplasias.
Resumo:
Hereditary hemochromatosis (HH) is a common autosomal disorder of iron metabolism mainly affecting Caucasian populations. Three recurrent disease-associated mutations have been detected in the hemochromatosis gene (HFE): C282Y, H63D, and S65C. Although HH phenotype has been associated with all three mutations, C282Y is considered the most relevant mutation responsible for hemochromatosis. Clinical complications of HH include cirrhosis of the liver, congestive cardiac failure and cardiac arrhythmias, endocrine pancreatic disease, which can be prevented by early diagnosis and treatment. Therefore, a reliable genotyping method is required for presymptomatic diagnosis. We describe the simultaneous detection of the C282Y, H63D and S65C mutations in the hemochromatosis gene by real-time PCR followed by melting curve analysis using fluorescence resonance energy transfer (FRET) probes. The acceptor fluorophore may be replaced by a quencher, increasing multiplex possibilities. Real-time PCR results were compared to the results of sequencing and conventional PCR followed by restriction digestion and detection by agarose gel electrophoresis (PCR-RFLP). Genotypes from 80 individuals obtained both by the conventional PCR-RFLP method and quenched-FRET real-time PCR were in full agreement. Sequencing also confirmed the results obtained by the new method, which proved to be an accurate, rapid and cost-effective diagnostic assay. Our findings demonstrate the usefulness of real-time PCR for the simultaneous detection of mutations in the HFE gene, which allows a reduction of a significant amount of time in sample processing compared to the PCR-RFLP method, eliminates the use of toxic reagents, reduces the risk of contamination in the laboratory, and enables full process automation.
Resumo:
Griscelli syndrome (GS) is a rare autosomal recessive disorder caused by mutation in the MYO5A (GS1, Elejalde), RAB27A (GS2) or MLPH (GS3) genes. Typical features of all three subtypes of this disease include pigmentary dilution of the hair and skin and silvery-gray hair. Whereas the GS3 phenotype is restricted to the pigmentation dysfunction, GS1 patients also show primary neurological impairment and GS2 patients have severe immunological deficiencies that lead to recurrent infections and hemophagocytic syndrome. We report here the diagnosis of GS2 in 3-year-old twin siblings, with silvery-gray hair, immunodeficiency, hepatosplenomegaly and secondary severe neurological symptoms that culminated in multiple organ failure and death. Light microscopy examination of the hair showed large, irregular clumps of pigments characteristic of GS. A homozygous nonsense mutation, C-T transition (c.550C>T), in the coding region of the RAB27A gene, which leads to a premature stop codon and prediction of a truncated protein (R184X), was found. In patient mononuclear cells, RAB27A mRNA levels were the same as in cells from the parents, but no protein was detected. In addition to the case report, we also present an updated summary on the exon/intron organization of the human RAB27A gene, a literature review of GS2 cases, and a complete list of the human mutations currently reported in this gene. Finally, we propose a flow chart to guide the early diagnosis of the GS subtypes and Chédiak-Higashi syndrome.
Resumo:
Of all malignant neoplasias affecting women, breast cancer has the highest incidence rate in Brazil. The objective of the present study was to determine the frequency of genetic modifications in families with medium and high risk for breast and ovarian cancer from different regions of Brazil. An exploratory, descriptive study was carried out on the prevalence of the BRCA1 and BRCA2 mutations in case series of high-risk families for breast and/or ovarian cancer. After heredogram construction, a blood sample was taken and DNA extraction was performed in all index cases. The protein truncation test was used to screen for truncated mutations in exon 11 of the BRCA1 gene and in exons 10 and 11 of the BRCA2 gene. Of the 612 individuals submitted to genetic testing, 21 (3.4%), 19 women and 2 men, had mutations in the BRCA1 or BRCA2 genes. Of the 19 BRCA1 mutations found in the 18 participants, 7 consisted of ins6kb mutations, 4 were 5382insC, 3 were 2156delGinsCC, 2 were 185delAG, 1 was C1201G, 1 was C3522T, and 1 was 3450del4. With respect to the BRCA2 gene, 3 mutations were found: 5878del10, 5036delA and 4232insA (one case each). The prevalence of germline mutations in the BRCA1 and BRCA2 genes found in the present study was lower than reported by other studies on high-risk Brazilian populations. The inclusion of individuals with medium risk may have contributed to the lower prevalence observed.
Resumo:
Mutations of the HFE and TFR2 genes have been associated with iron overload. HFE and TFR2 mutations were assessed in blood donors, and the relationship with iron status was evaluated. Subjects (N = 542) were recruited at the Hemocentro da Santa Casa de São Paulo, São Paulo, Brazil. Iron status was not influenced by HFE mutations in women and was independent of blood donation frequency. In contrast, men carrying the HFE 282CY genotype had lower total iron-binding capacity (TIBC) than HFE 282CC genotype carriers. Men who donated blood for the first time and were carriers of the HFE 282CY genotype had higher transferrin saturation values and lower TIBC concentrations than those with the homozygous wild genotype for the HFE C282Y mutation. Moreover, in this group of blood donors, carriers of HFE 63DD plus 63HD genotypes had higher serum ferritin values than those with the homozygous wild genotype for HFE H63D mutation. Multiple linear regression analysis showed that HFE 282CY leads to a 17.21% increase (P = 0.018) and a 83.65% decrease (P = 0.007) in transferrin saturation and TIBC, respectively. In addition, serum ferritin is influenced by age (3.91%, P = 0.001) and the HFE 63HD plus DD genotype (55.84%, P = 0.021). In conclusion, the HFE 282Y and 65C alleles were rare, while the HFE 63D allele was frequent in Brazilian blood donors. The HFE C282Y and H63D mutations were associated with alterations in iron status in blood donors in a gender-dependent manner.