951 resultados para THREE-DIMENSIONAL SYSTEM
Resumo:
To study the effect of a nonlinear noise filter on the detection of simulated endoleaks in a phantom with 80- and 100-kVp multidetector computed tomographic (CT) angiography.
Resumo:
Three-dimensional (3D) models of teeth and soft and hard tissues are tessellated surfaces used for diagnosis, treatment planning, appliance fabrication, outcome evaluation, and research. In scientific publications or communications with colleagues, these 3D data are often reduced to 2-dimensional pictures or need special software for visualization. The portable document format (PDF) offers a simple way to interactively display 3D surface data without additional software other than a recent version of Adobe Reader (Adobe, San Jose, Calif). The purposes of this article were to give an example of how 3D data and their analyses can be interactively displayed in 3 dimensions in electronic publications, and to show how they can be exported from any software for diagnostic reports and communications among colleagues.
Resumo:
In tissue engineering, a variety of methods are commonly used to evaluate survival of cells inside tissues or three-dimensional (3D) carriers. Among these methods confocal laser scanning microscopy opened accessibility of 3D tissue using live cell imaging into the tissue or 3D scaffolds. However, although this technique is ideally applied to 3D tissue or scaffolds with thickness up to several millimetres, this application is surprisingly rare and scans are often done on slices with thickness <20 μm. Here, we present novel protocols for the staining of 3D tissue (e.g. intervertebral disc tissue) and scaffolds, such as fibrin gels or alginate beads.
Resumo:
Mechanical ventilation is not only a life saving treatment but can also cause negative side effects. One of the main complications is inflammation caused by overstretching of the alveolar tissue. Previously, studies investigated either global strains or looked into which states lead to inflammatory reactions in cell cultures. However, the connection between the global deformation, of a tissue strip or the whole organ, and the strains reaching the single cells lining the alveolar walls is unknown and respective studies are still missing. The main reason for this is most likely the complex, sponge-like alveolar geometry, whose three-dimensional details have been unknown until recently. Utilizing synchrotron-based X-ray tomographic microscopy, we were able to generate real and detailed three-dimensional alveolar geometries on which we have performed finite-element simulations. This allowed us to determine, for the first time, a three-dimensional strain state within the alveolar wall. Briefly, precision-cut lung slices, prepared from isolated rat lungs, were scanned and segmented to provide a three-dimensional geometry. This was then discretized using newly developed tetrahedral elements. The main conclusions of this study are that the local strain in the alveolar wall can reach a multiple of the value of the global strain, for our simulations up to four times as high and that thin structures obviously cause hotspots that are especially at risk of overstretching.
Resumo:
An automated algorithm for detection of the acetabular rim was developed. Accuracy of the algorithm was validated in a sawbone study and compared against manually conducted digitization attempts, which were established as the ground truth. The latter proved to be reliable and reproducible, demonstrated by almost perfect intra- and interobserver reliability. Validation of the automated algorithm showed no significant difference compared to the manually acquired data in terms of detected version and inclination. Automated detection of the acetabular rim contour and the spatial orientation of the acetabular opening plane can be accurately achieved with this algorithm.
Resumo:
The purpose of this study was to identify the anatomy of pineal region venous complex using neuronavigation software when distorted by the presence of a space-occupying lesion and to describe the anatomical relationship between lesion and veins. Moreover we discuss its influence on the choice of the surgical strategy.
Resumo:
A main field in biomedical optics research is diffuse optical tomography, where intensity variations of the transmitted light traversing through tissue are detected. Mathematical models and reconstruction algorithms based on finite element methods and Monte Carlo simulations describe the light transport inside the tissue and determine differences in absorption and scattering coefficients. Precise knowledge of the sample's surface shape and orientation is required to provide boundary conditions for these techniques. We propose an integrated method based on structured light three-dimensional (3-D) scanning that provides detailed surface information of the object, which is usable for volume mesh creation and allows the normalization of the intensity dispersion between surface and camera. The experimental setup is complemented by polarization difference imaging to avoid overlaying byproducts caused by inter-reflections and multiple scattering in semitransparent tissue.
Resumo:
Physicians and scientists use a broad spectrum of terms to classify contrast media (CM)-induced adverse reactions. In particular, the designation of hypersensitivity reactions is quite varied. Consequently, comparisons of different papers dealing with this subject are difficult or even impossible. Moreover, general descriptions may lead to problems in understanding reactions in patients with a history of adverse CM-reactions, and in efficiently managing these patients. Therefore, the goal of this paper is to suggest an easy system to clearly classify these reactions. The proposed three-step systems (3SS) is built up as follows: step 1 exactly describes the clinical features, including their severity; step 2 categorizes the time point of the onset (immediate or nonimmediate); and step 3 generally classifies the reaction (hypersensitivity or nonhypersensitivity reaction). The 3SS may facilitate better understanding of the clinical manifestations of adverse CM reactions and may support the prevention of these reactions on the basis of personalized medicine approaches.
Resumo:
In this study, we show the use of three-dimensional printing models for preoperative planning of transcatheter valve replacement in a patient with an extreme porcelain aorta. A 70-year-old man with severe aortic stenosis and a porcelain aorta was referred to our center for transcatheter aortic valve replacement. Unfortunately, the patient died after the procedure because of a potential ischemic event. Therefore, we decided to fabricate three-dimensional models to evaluate the potential effects of these constructs for previous surgical planning and simulation of the transcatheter valve replacement.
Resumo:
Icy debris fans have are newly-described landforms (Kochel and Trop, 2008 and 2012) as landforms developed immediately after deglaciation on Earth and similar features have been observed on Mars. Subsurface characteristics of Icy debris fans have not been previously investigated. Ground penetrating radar (GPR) was used to non-invasively investigate the subsurface characteristics of icy debris fans near McCarthy, Alaska, USA. The three fans investigated in Alaska are the East, West, and Middle fans (Kochel and Trop, 2008 and 2012) which below the Nabesna ice cap and on top of the McCarthy Creek Glacier. Icy debris fans in general are a largely unexplored suite of paraglacial landforms and processes in alpine regions. Recent field studies focused on direct observations and depositional processes. Their results showed that the fan's composition is primarily influenced by the type and frequency of depositional processes that supply the fan. Photographic studies show that the East Fan receives far more ice and snow avalanches whereas the Middle and West Fans receive fewer mass wasting events but more clastic debris is deposited on the Middle and West fan from rock falls and icy debris flows. GPR profiles and Wide-angle reflection and refraction (WARR) surveys consisting of both, common mid-point (CMP), and common shot-point (CSP) surveys investigated the subsurface geometry of the fans and the McCarthy Creek Glacier. All GPR surveys were collected in July of 2013 with 100MHz bi-static antennas. Four axial profiles and three cross-fan profiles were done on the West and Middle fans as well as the McCarthy Creek Glacier in order to investigate the relationship between the three features. GPR profiles yielded reflectors that were continuous for 10+ m and hyperbolic reflections in the subsurface. The depth to these reflections in the subsurface requires knowledge of the velocity of the subsurface. To find the velocity of the subsurface eight WARR surveys collected on the fans and on the McCarthy Creek glacier to provide information on variability of subsurface velocities. The profiles of the Middle and West fan have more reflections in their profiles compared to profiles done on the McCarthy Creek Glacier. Based on the WARR surveys, we interpret the lower energy return in the glacier to be caused by two reasons. 1) The increased attenuation due to wet ice versus drier ice and on the fan with GPR velocities >0.15m/ns. 2) Lack of interfaces in the glacier compared to those in the fans which are inferred to be produced by the alternating layers of stratified ice and lithic-rich layers. The GPR profiles on the West and Middle Fans show the shallow subsurface being dominated by lenticular reflections interpreted to be consistent with the shape of surficial deposits. The West Fan is distinguished from the Middle Fan by the nature of its reflections patterns and thicknesses of reflection packages that clearly shows the Middle fan with a greater thickness. The changes in subsurface reflections between the Middle and West Fans as well as the McCarthy Creek Glacier are thought to reflect the type and frequency of depositional processes and surrounding bedrock and talus slopes.
Resumo:
Within the next few years, the medical industry will launch increasingly affordable three-dimensional (3D) vision systems for the operating room (OR). This study aimed to evaluate the effect of two-dimensional (2D) and 3D visualization on surgical skills and task performance.