909 resultados para TARGETING PEPTIDE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract The endoplasmic reticulum (ER) orchestrates the production of membrane-bound and secreted proteins. However, its capacity to process the synthesis and folding of protein is limited. Protein overload and the accumulation of misfolded proteins in the ER trigger an adaptive response known as the ER-stress response that is mediated by specific ER-anchored signaling pathways. This response regulates cell functions aimed at restoring cellular homeostasis or at promoting apoptosis of irreparably damaged cells. Activation or deregulation of ER-signaling pathways has been associated with various diseases including cancer. Here we discuss how tumors engage ER-signaling pathways to promote tumorigenesis and how manipulation of this process by anticancer drugs may contribute to cancer treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Purpose: We aimed to investigate the safety, tolerability, and systemic diffusion of a single escalating dose of XG-102 (a 31-D-amino-acid peptide inhibiting JNK pathway activation), administered subconjunctivally in the treatment of post-surgery or post-trauma intraocular inflammation. Methods: This is a dose-escalating, tolerance Phase Ib study. Twenty patients with post-surgery or post-traumatic intraocular inflammation were assigned to 1 of the 4 dose escalating (45, 90, 450, or 900 μg XG-102) groups of 5 patients each. Patients were evaluated at 24, 48 h, 8, and 28 days following the administration of XG-102, including laboratory tests, standard eye examinations, vital signs, and occurrence of adverse events. A single plasma quantification of XG-102 was performed 30 min after administration, according to previous pharmacokinetics studies performed on volunteers. Results: A total of 17 non-serious adverse events, considered unrelated to the study treatment, were reported for 10 patients. The adverse event incidence was not related to the drug dose. All patients experienced a decrease in intraocular inflammation as of 24 h post-administration and this decrease was sustained up to 28 days thereafter. No patient required local injection or systemic administration of corticoids following the administration of XG-102. XG-102 was undetectable in the first 3 dose groups. In the fourth-dose group (900 μg) the XG-102 plasma levels were above the limit of detection for 3 patients and above the limit of quantification for 1 patient. Conclusions: In this first clinical trial using XG-102, administered as a single subconjunctival injection as adjunct therapy, in patients with recent post-surgery or post-trauma intraocular inflammation is safe and well tolerated. Further studies are required to evaluate its efficacy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Membrane organization into condensed domains or rafts provides molecular platforms for selective recruitment of proteins. Cell migration is a general process that requires spatiotemporal targeting of Rac1 to membrane rafts. The protein machinery responsible for making rafts competent to recruit Rac1 remains elusive. Some members of the MAL family of proteins are involved in specialized processes dependent on this type of membrane. Because condensed membrane domains are a general feature of the plasma membrane of all mammalian cells, we hypothesized that MAL family members with ubiquitous expression and plasma membrane distribution could be involved in the organization of membranes for cell migration. We show that myeloid-associated differentiation marker (MYADM), a protein with unique features within the MAL family, colocalizes with Rac1 in membrane protrusions at the cell surface and distributes in condensed membranes. MYADM knockdown (KD) cells had altered membrane condensation and showed deficient incorporation of Rac1 to membrane raft fractions and, similar to Rac1 KD cells, exhibited reduced cell spreading and migration. Results of rescue-of-function experiments by expression of MYADM or active Rac1L61 in cells knocked down for Rac1 or MYADM, respectively, are consistent with the idea that MYADM and Rac1 act on parallel pathways that lead to similar functional outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Summary The specific CD8+ T cell immune response against tumors relies on the recognition by the T cell receptor (TCR) on cytotoxic T lymphocytes (CTL) of antigenic peptides bound to the class I major histocompatibility complex (MHC) molecule. Such tumor associated antigenic peptides are the focus of tumor immunotherapy with peptide vaccines. The strategy for obtaining an improved immune response often involves the design of modified tumor associated antigenic peptides. Such modifications aim at creating higher affinity and/or degradation resistant peptides and require precise structures of the peptide-MHC class I complex. In addition, the modified peptide must be cross-recognized by CTLs specific for the parental peptide, i.e. preserve the structure of the epitope. Detailed structural information on the modified peptide in complex with MHC is necessary for such predictions. In this thesis, the main focus is the development of theoretical in silico methods for prediction of both structure and cross-reactivity of peptide-MHC class I complexes. Applications of these methods in the context of immunotherapy are also presented. First, a theoretical method for structure prediction of peptide-MHC class I complexes is developed and validated. The approach is based on a molecular dynamics protocol to sample the conformational space of the peptide in its MHC environment. The sampled conformers are evaluated using conformational free energy calculations. The method, which is evaluated for its ability to reproduce 41 X-ray crystallographic structures of different peptide-MHC class I complexes, shows an overall prediction success of 83%. Importantly, in the clinically highly relevant subset of peptide-HLAA*0201 complexes, the prediction success is 100%. Based on these structure predictions, a theoretical approach for prediction of cross-reactivity is developed and validated. This method involves the generation of quantitative structure-activity relationships using three-dimensional molecular descriptors and a genetic neural network. The generated relationships are highly predictive as proved by high cross-validated correlation coefficients (0.78-0.79). Together, the here developed theoretical methods open the door for efficient rational design of improved peptides to be used in immunotherapy. Résumé La réponse immunitaire spécifique contre des tumeurs dépend de la reconnaissance par les récepteurs des cellules T CD8+ de peptides antigéniques présentés par les complexes majeurs d'histocompatibilité (CMH) de classe I. Ces peptides sont utilisés comme cible dans l'immunothérapie par vaccins peptidiques. Afin d'augmenter la réponse immunitaire, les peptides sont modifiés de façon à améliorer l'affinité et/ou la résistance à la dégradation. Ceci nécessite de connaître la structure tridimensionnelle des complexes peptide-CMH. De plus, les peptides modifiés doivent être reconnus par des cellules T spécifiques du peptide natif. La structure de l'épitope doit donc être préservée et des structures détaillées des complexes peptide-CMH sont nécessaires. Dans cette thèse, le thème central est le développement des méthodes computationnelles de prédiction des structures des complexes peptide-CMH classe I et de la reconnaissance croisée. Des applications de ces méthodes de prédiction à l'immunothérapie sont également présentées. Premièrement, une méthode théorique de prédiction des structures des complexes peptide-CMH classe I est développée et validée. Cette méthode est basée sur un échantillonnage de l'espace conformationnel du peptide dans le contexte du récepteur CMH classe I par dynamique moléculaire. Les conformations sont évaluées par leurs énergies libres conformationnelles. La méthode est validée par sa capacité à reproduire 41 structures des complexes peptide-CMH classe I obtenues par cristallographie aux rayons X. Le succès prédictif général est de 83%. Pour le sous-groupe HLA-A*0201 de complexes de grande importance pour l'immunothérapie, ce succès est de 100%. Deuxièmement, à partir de ces structures prédites in silico, une méthode théorique de prédiction de la reconnaissance croisée est développée et validée. Celle-ci consiste à générer des relations structure-activité quantitatives en utilisant des descripteurs moléculaires tridimensionnels et un réseau de neurones couplé à un algorithme génétique. Les relations générées montrent une capacité de prédiction remarquable avec des valeurs de coefficients de corrélation de validation croisée élevées (0.78-0.79). Les méthodes théoriques développées dans le cadre de cette thèse ouvrent la voie du design de vaccins peptidiques améliorés.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MHC-peptide multimers containing biotinylated MHC-peptide complexes bound to phycoerythrin (PE) streptavidin (SA) are widely used for analyzing and sorting antigen-specific T cells. Here we describe alternative T cell-staining reagents that are superior to conventional reagents. They are built on reversible chelate complexes of Ni(2+)-nitrilotriacetic acid (NTA) with oligohistidines. We synthesized biotinylated linear mono-, di-, and tetra-NTA compounds using conventional solid phase peptide chemistry and studied their interaction with HLA-A*0201-peptide complexes containing a His(6), His(12), or 2×His(6) tag by surface plasmon resonance on SA-coated sensor chips and equilibrium dialysis. The binding avidity increased in the order His(6) < His(12) < 2×His(6) and NTA(1) < NTA(2) < NTA(4), respectively, depending on the configuration of the NTA moieties and increased to picomolar K(D) for the combination of a 2×His(6) tag and a 2×Ni(2+)-NTA(2). We demonstrate that HLA-A2-2×His(6)-peptide multimers containing either Ni(2+)-NTA(4)-biotin and PE-SA- or PE-NTA(4)-stained influenza and Melan A-specific CD8+ T cells equal or better than conventional multimers. Although these complexes were highly stable, they very rapidly dissociated in the presence of imidazole, which allowed sorting of bona fide antigen-specific CD8+ T cells without inducing T cell death as well as assessment of HLA-A2-peptide monomer dissociation kinetics on CD8+ T cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The integrin family of cell adhesion receptors is emerging as a promising target of anticancer therapy. AlphaVbeta3 and alphaVbeta5 integrins are overexpressed on both glioma cells and tumor vasculature. Cilengitide, the most advanced specific integrin inhibitor in oncology, has shown antitumor activity against glioma in early clinical trials. Durable remissions have been observed in phase I and phase II trials for recurrent glioblastoma (GBM) with both lower and higher doses of cilengitide. Pilot trials in newly diagnosed glioblastoma in conjunction with standard chemoradiotherapy have been encouraging. Preclinical data suggest synergy with concomitant chemo- and radiation therapy. A pivotal phase III study (CENTRIC) in newly diagnosed GBM patients is currently recruiting. This paper summarizes the current understanding of the role of integrins and their inhibition in gliomagenesis. The background and design of ongoing trials are outlined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genes of interest can be targeted specifically to respiratory epithelial cells in intact animals with high efficiency by exploiting the receptor-mediated endocytosis of the polymeric immunoglobulin receptor. A DNA carrier, consisting of the Fab portion of polyclonal antibodies raised against rat secretory component covalently linked to poly-L-lysine, was used to introduce plasmids containing different reporter genes into airway epithelial cells in vivo. We observed significant levels of luciferase enzyme activity in protein extracts from the liver and lung, achieving maximum values of 13,795 +/- 4,431 and 346,954 +/- 199,120 integrated light units (ILU) per milligram of protein extract, respectively. No luciferase activity was detected in spleen or heart, which do not express the receptor. Transfections using complexes consisting of an irrelevant plasmid (pCMV lacZ) bound to the bona fide carrier or the expression plasmid (pGEMluc) bound to a carrier based on an irrelevant Fab fragment resulted in background levels of luciferase activity in all tissues examined. Thus, only tissues that contain cells bearing the polymeric immunoglobulin receptor are transfected, and transfection cannot be attributed to the nonspecific uptake of an irrelevant carrier-DNA complex. Specific mRNA from the luciferase gene was also detected in the lungs of transfected animals. To determine which cells in the lungs are transfected by this method, DNA complexes were prepared containing expression plasmids with genes encoding the bacterial beta-galactosidase or the human interleukin 2 receptor. Expression of these genes was localized to the surface epithelium of the airways and the submucosal glands, and not the bronchioles and alveoli. Receptor-mediated endocytosis can be used to introduce functional genes into the respiratory epithelium of rats, and may be a useful technique for gene therapy targeting the lung.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Psoriasis is a common T-cell-mediated skin disease with 2-3% prevalence worldwide. Psoriasis is considered to be an autoimmune disease, but the precise nature of the autoantigens triggering T-cell activation remains poorly understood. Here we find that two-thirds of patients with moderate-to-severe plaque psoriasis harbour CD4(+) and/or CD8(+) T cells specific for LL37, an antimicrobial peptide (AMP) overexpressed in psoriatic skin and reported to trigger activation of innate immune cells. LL37-specific T cells produce IFN-γ, and CD4(+) T cells also produce Th17 cytokines. LL37-specific T cells can infiltrate lesional skin and may be tracked in patients blood by tetramers staining. Presence of circulating LL37-specific T cells correlates significantly with disease activity, suggesting a contribution to disease pathogenesis. Thus, we uncover a role of LL37 as a T-cell autoantigen in psoriasis and provide evidence for a role of AMPs in both innate and adaptive immune cell activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many mechanisms have been proposed to explain why immune responses against human tumor antigens are generally ineffective. For example, tumor cells have been shown to develop active immune evasion mechanisms. Another possibility is that tumor antigens are unable to optimally stimulate tumor-specific T cells. In this study we have used HLA-A2/Melan-A peptide tetramers to directly isolate antigen-specific CD8(+) T cells from tumor-infiltrated lymph nodes. This allowed us to quantify the activation requirements of a representative polyclonal yet monospecific tumor-reactive T cell population. The results obtained from quantitative assays of intracellular Ca(2+) mobilization, TCR down-regulation, cytokine production and induction of effector cell differentiation indicate that the naturally produced Melan-A peptides are weak agonists and are clearly suboptimal for T cell activation. In contrast, optimal T cell activation was obtained by stimulation with recently defined peptide analogues. These findings provide a molecular basis for the low immunogenicity of tumor cells and suggest that patient immunization with full agonist peptide analogues may be essential for stimulation and maintenance of anti-tumor T cell responses in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lymph node cells derived from A.TH or A.TL mice primed with beef cytochrome c show striking patterns of reactivity when assayed in vitro for antigen-induced T cell proliferation. Whereas cells from A.TH mice respond specifically to beef cytochrome c or peptides composed of amino acids 1-65 and 81-104, cells from A.TL mice respond neither to beef cytochrome c nor to peptide 1-65, but proliferate following exposure to either peptide 81-104 or to a cytochrome c hybrid molecule in which the N-terminal peptide of beef (1-65) was substituted by a similar peptide obtained from rabbit cytochrome c. Thus, T cells from mice phenotypically unresponsive to beef cytochrome may, in fact, contain populations of lymphocytes capable of responding to a unique peptide, the response to which is totally inhibited when the same fragment is presented in the sequence of the intact protein.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is little information on how neuropeptide Y (NPY) proteolysis by peptidases occurs in serum, in part because reliable techniques are lacking to distinguish different NPY immunoreactive forms and also because the factors affecting the expression of these enzymes have been poorly studied. In the present study, LC-MS/MS was used to identify and quantify NPY fragments resulting from peptidolytic cleavage of NPY(1-36) upon incubation with human serum. Kinetic studies indicated that NPY(1-36) is rapidly cleaved in serum into 3 main fragments with the following order of efficacy: NPY(3-36) &gt;&gt; NPY(3-35) &gt; NPY(2-36). Trace amounts of additional NPY forms were identified by accurate mass spectrometry. Specific inhibitors of dipeptidyl peptidase IV, kallikrein, and aminopeptidase P prevented the production of NPY(3-36), NPY(3-35), and NPY(2-36), respectively. Plasma kallikrein at physiological concentrations converted NPY(3-36) into NPY(3-35). Receptor binding assays revealed that NPY(3-35) is unable to bind to NPY Y1, Y2, and Y5 receptors; thus NPY(3-35) may represent the major metabolic clearance product of the Y2/Y5 agonist, NPY(3-36).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background In angioimmunoblastic T-cell lymphoma, symptoms linked to B-lymphocyte activation are common, and variable numbers of CD20(+) large B-blasts, often infected by Epstein-Barr virus, are found in tumor tissues. We postulated that the disruption of putative B-T interactions and/or depletion of the Epstein-Barr virus reservoir by an anti-CD20 monoclonal antibody (rituximab) could improve the clinical outcome produced by conventional chemotherapy. DESIGN AND METHODS: Twenty-five newly diagnosed patients were treated, in a phase II study, with eight cycles of rituximab + chemotherapy (R-CHOP21). Tumor infiltration, B-blasts and Epstein-Barr virus status in tumor tissue and peripheral blood were fully characterized at diagnosis and were correlated with clinical outcome. RESULTS: A complete response rate of 44% (95% CI, 24% to 65%) was observed. With a median follow-up of 24 months, the 2-year progression-free survival rate was 42% (95% CI, 22% to 61%) and overall survival rate was 62% (95% CI, 40% to 78%). The presence of Epstein-Barr virus DNA in peripheral blood mononuclear cells (14/21 patients) correlated with Epstein-Barr virus score in lymph nodes (P<0.004) and the detection of circulating tumor cells (P=0.0019). Despite peripheral Epstein-Barr virus clearance after treatment, the viral load at diagnosis (>100 copy/μg DNA) was associated with shorter progression-free survival (P=0.06). Conclusions We report here the results of the first clinical trial targeting both the neoplastic T cells and the microenvironment-associated CD20(+) B lymphocytes in angioimmunoblastic T-cell lymphoma, showing no clear benefit of adding rituximab to conventional chemotherapy. A strong relationship, not previously described, between circulating Epstein-Barr virus and circulating tumor cells is highlighted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We evaluated the benefits of a novel formulation of vasoactive intestinal peptide (VIP) based on the incorporation of VIP-loaded rhodamine-conjugated liposomes (VIP-Rh-Lip) within hyaluronic acid (HA) gel (Gel-VIP-Rh-Lip) for the treatment of endotoxin-induced uveitis (EIU) in comparison with VIP-Rh-Lip alone. In vitro release study and rheological analysis showed that interactions between HA chains and liposomes resulted in increased viscosity and reinforced elasticity of the gel. In vivo a single intravitreal injection of Gel-VIP-Rh-Lip was performed in rats 7 days prior to uveitis induction by subcutaneous lipopolysaccharide injection. The maximal ocular inflammation occurs within 16-24 h in controls (VIP-Rh-Lip, unloaded-Rh-Lip). Whereas intraocular injection of VIP-Rh-Lip had no effect on EIU severity compared with controls, Gel-VIP-Rh-Lip reduced significantly the clinical score and number of inflammatory cells infiltrating the eye. The fate of liposomes, VIP and HA in the eyes, regional and inguinal lymph nodes and spleen was analyzed by immunostaining and fluorescence microscopy. Retention of liposomes by HA gel was observed in vitro and in vivo. Inflammation severity seemed to impact on system stability resulting in the delayed release of VIP. Thus, HA gel containing VIP-Rh-Lip is an efficient strategy to obtain a sustained delivery of VIP in ocular and lymph node tissues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alloreactive T cells are thought to be a potentially rich source of high-avidity T cells with therapeutic potential since tolerance to self-Ags is restricted to self-MHC recognition. Given the particularly high frequency of alloreactive T cells in the peripheral immune system, we used numerous MHC class I multimers to directly visualize and isolate viral and tumor Ag-specific alloreactive CD8 T cells. In fact, all but one specificities screened were undetectable in ex vivo labeling. In this study, we report the occurrence of CD8 T cells specifically labeled with allo-HLA-A*0201/Melan-A/MART-1(26-35) multimers at frequencies that are in the range of 10(-4) CD8 T cells and are thus detectable ex vivo by flow cytometry. We report the thymic generation and shaping of tumor Ag-specific, alloreactive T cells as well as their fate once seeded in the periphery. We show that these cells resemble their counterparts in HLA-A*0201-positive individuals, based on their structural and functional attributes.