949 resultados para Symbolic Computation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An algorithm is produced for the symbolic solving of systems of partial differential equations by means of multivariate Laplace–Carson transform. A system of K equations with M as the greatest order of partial derivatives and right-hand parts of a special type is considered. Initial conditions are input. As a result of a Laplace–Carson transform of the system according to initial condition we obtain an algebraic system of equations. A method to obtain compatibility conditions is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article shows the social importance of subsistence minimum in Georgia. The methodology of its calculation is also shown. We propose ways of improving the calculation of subsistence minimum in Georgia and how to extend it for other developing countries. The weights of food and non-food expenditures in the subsistence minimum baskets are essential in these calculations. Daily consumption value of the minimum food basket has been calculated too. The average consumer expenditures on food supply and the other expenditures to the share are considered in dynamics. Our methodology of the subsistence minimum calculation is applied for the case of Georgia. However, it can be used for similar purposes based on data from other developing countries, where social stability is achieved, and social inequalities are to be actualized. ACM Computing Classification System (1998): H.5.3, J.1, J.4, G.3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 13N15, 13A50, 13F20.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A number of recent studies have investigated the introduction of decoherence in quantum walks and the resulting transition to classical random walks. Interestingly,it has been shown that algorithmic properties of quantum walks with decoherence such as the spreading rate are sometimes better than their purely quantum counterparts. Not only quantum walks with decoherence provide a generalization of quantum walks that naturally encompasses both the quantum and classical case, but they also give rise to new and different probability distribution. The application of quantum walks with decoherence to large graphs is limited by the necessity of evolving state vector whose sizes quadratic in the number of nodes of the graph, as opposed to the linear state vector of the purely quantum (or classical) case. In this technical report,we show how to use perturbation theory to reduce the computational complexity of evolving a continuous-time quantum walk subject to decoherence. More specifically, given a graph over n nodes, we show how to approximate the eigendecomposition of the n2×n2 Lindblad super-operator from the eigendecomposition of the n×n graph Hamiltonian.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the theoretical and numerical computation of rare transitions in simple geophysical turbulent models. We consider the barotropic quasi-geostrophic and two-dimensional Navier–Stokes equations in regimes where bistability between two coexisting large-scale attractors exist. By means of large deviations and instanton theory with the use of an Onsager–Machlup path integral formalism for the transition probability, we show how one can directly compute the most probable transition path between two coexisting attractors analytically in an equilibrium (Langevin) framework and numerically otherWe adapt a class of numerical optimization algorithms known as minimum action methods to simple geophysical turbulent models. We show that by numerically minimizing an appropriate action functional in a large deviation limit, one can predict the most likely transition path for a rare transition between two states. By considering examples where theoretical predictions can be made, we show that the minimum action method successfully predicts the most likely transition path. Finally, we discuss the application and extension of such numerical optimization schemes to the computation of rare transitions observed in direct numerical simulations and experiments and to other, more complex, turbulent systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examined contextual and situational influences on older adults' decision to complete advance directives by means of a conceptual framework derived from symbolic interactionist theory and a cross-sectional, correlational research design. It was hypothesized that completion of advance directives among older adults would be associated with visiting or participating in the care of a terminally ill or permanently incompetent individual sustained by technology. Using a 53-item questionnaire, computer assisted telephone interviews (CATI) were conducted with 398 community dwelling adults between September and October 2003. Respondents were contacted using random-select dialing from a listed sample of 99% of household telephone numbers in one South Florida census tract. Over 90% of households in this tract include an individual age 65 or older. ^ The results revealed that contrary to most reports in the literature a substantial proportion of older adults (82%) had completed advance directives and that the link between older adults and document completion was mainly through attorneys and not mandated agents, health care professionals. Further, more than one third of older adults reported that religion/spirituality was not an important part of their life, suggesting that the recommended practice of offering religious/spiritual counseling to all those approaching death be reexamined. The hypothesis was not supported (p > .05) and is explained by the situational emphasis on the variables rather than on structural influences. In logistic regression analysis, only increasing age (p = .001) and higher education (p = < .001) were significant but explained only 10% of the variance in document completion. ^ Based on the findings, increased interdisciplinary collaboration is suggested with regard to the advance directive agenda. Since attorneys play a key role in document completion, other professions should seek their expertise and collaboration. In addition, the inclusion of a religious/spiritual preference section in all living wills should be considered as an essential part of a holistic and individually appropriate document. Implications for social work education, practice, and advocacy are discussed as well as suggestions for further research. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Today's wireless networks rely mostly on infrastructural support for their operation. With the concept of ubiquitous computing growing more popular, research on infrastructureless networks have been rapidly growing. However, such types of networks face serious security challenges when deployed. This dissertation focuses on designing a secure routing solution and trust modeling for these infrastructureless networks. ^ The dissertation presents a trusted routing protocol that is capable of finding a secure end-to-end route in the presence of malicious nodes acting either independently or in collusion, The solution protects the network from active internal attacks, known to be the most severe types of attacks in an ad hoc application. Route discovery is based on trust levels of the nodes, which need to be dynamically computed to reflect the malicious behavior in the network. As such, we have developed a trust computational model in conjunction with the secure routing protocol that analyzes the different malicious behavior and quantifies them in the model itself. Our work is the first step towards protecting an ad hoc network from colluding internal attack. To demonstrate the feasibility of the approach, extensive simulation has been carried out to evaluate the protocol efficiency and scalability with both network size and mobility. ^ This research has laid the foundation for developing a variety of techniques that will permit people to justifiably trust the use of ad hoc networks to perform critical functions, as well as to process sensitive information without depending on any infrastructural support and hence will enhance the use of ad hoc applications in both military and civilian domains. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract: Four second-grade students participated in a B-A-B withdrawal single-subject design experiment. The intervention package implemented consisted of three components: self-monitoring, performance feedback, and reinforcers. Participants completed math probes across phases. Accuracy and productivity was recorded and calculated. Results demonstrated the intervention package improved accuracy and productivity for all participants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this research was to apply model checking by using a symbolic model checker on Predicate Transition Nets (PrT Nets). A PrT Net is a formal model of information flow which allows system properties to be modeled and analyzed. The aim of this thesis was to use the modeling and analysis power of PrT nets to provide a mechanism for the system model to be verified. Symbolic Model Verifier (SMV) was the model checker chosen in this thesis, and in order to verify the PrT net model of a system, it was translated to SMV input language. A software tool was implemented which translates the PrT Net into SMV language, hence enabling the process of model checking. The system includes two parts: the PrT net editor where the representation of a system can be edited, and the translator which converts the PrT net into an SMV program.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It was recently shown [Phys. Rev. Lett. 110, 227201 (2013)] that the critical behavior of the random-field Ising model in three dimensions is ruled by a single universality class. This conclusion was reached only after a proper taming of the large scaling corrections of the model by applying a combined approach of various techniques, coming from the zero-and positive-temperature toolboxes of statistical physics. In the present contribution we provide a detailed description of this combined scheme, explaining in detail the zero-temperature numerical scheme and developing the generalized fluctuation-dissipation formula that allowed us to compute connected and disconnected correlation functions of the model. We discuss the error evolution of our method and we illustrate the infinite limit-size extrapolation of several observables within phenomenological renormalization. We present an extension of the quotients method that allows us to obtain estimates of the critical exponent a of the specific heat of the model via the scaling of the bond energy and we discuss the self-averaging properties of the system and the algorithmic aspects of the maximum-flow algorithm used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Postprint

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we developed and improved the numerical mode matching (NMM) method which has previously been shown to be a fast and robust semi-analytical solver to investigate the propagation of electromagnetic (EM) waves in an isotropic layered medium. The applicable models, such as cylindrical waveguide, optical fiber, and borehole with earth geological formation, are generally modeled as an axisymmetric structure which is an orthogonal-plano-cylindrically layered (OPCL) medium consisting of materials stratified planarly and layered concentrically in the orthogonal directions.

In this report, several important improvements have been made to extend applications of this efficient solver to the anisotropic OCPL medium. The formulas for anisotropic media with three different diagonal elements in the cylindrical coordinate system are deduced to expand its application to more general materials. The perfectly matched layer (PML) is incorporated along the radial direction as an absorbing boundary condition (ABC) to make the NMM method more accurate and efficient for wave diffusion problems in unbounded media and applicable to scattering problems with lossless media. We manipulate the weak form of Maxwell's equations and impose the correct boundary conditions at the cylindrical axis to solve the singularity problem which is ignored by all previous researchers. The spectral element method (SEM) is introduced to more efficiently compute the eigenmodes of higher accuracy with less unknowns, achieving a faster mode matching procedure between different horizontal layers. We also prove the relationship of the field between opposite mode indices for different types of excitations, which can reduce the computational time by half. The formulas for computing EM fields excited by an electric or magnetic dipole located at any position with an arbitrary orientation are deduced. And the excitation are generalized to line and surface current sources which can extend the application of NMM to the simulations of controlled source electromagnetic techniques. Numerical simulations have demonstrated the efficiency and accuracy of this method.

Finally, the improved numerical mode matching (NMM) method is introduced to efficiently compute the electromagnetic response of the induction tool from orthogonal transverse hydraulic fractures in open or cased boreholes in hydrocarbon exploration. The hydraulic fracture is modeled as a slim circular disk which is symmetric with respect to the borehole axis and filled with electrically conductive or magnetic proppant. The NMM solver is first validated by comparing the normalized secondary field with experimental measurements and a commercial software. Then we analyze quantitatively the induction response sensitivity of the fracture with different parameters, such as length, conductivity and permeability of the filled proppant, to evaluate the effectiveness of the induction logging tool for fracture detection and mapping. Casings with different thicknesses, conductivities and permeabilities are modeled together with the fractures in boreholes to investigate their effects for fracture detection. It reveals that the normalized secondary field will not be weakened at low frequencies, ensuring the induction tool is still applicable for fracture detection, though the attenuation of electromagnetic field through the casing is significant. A hybrid approach combining the NMM method and BCGS-FFT solver based integral equation has been proposed to efficiently simulate the open or cased borehole with tilted fractures which is a non-axisymmetric model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A class of multi-process models is developed for collections of time indexed count data. Autocorrelation in counts is achieved with dynamic models for the natural parameter of the binomial distribution. In addition to modeling binomial time series, the framework includes dynamic models for multinomial and Poisson time series. Markov chain Monte Carlo (MCMC) and Po ́lya-Gamma data augmentation (Polson et al., 2013) are critical for fitting multi-process models of counts. To facilitate computation when the counts are high, a Gaussian approximation to the P ́olya- Gamma random variable is developed.

Three applied analyses are presented to explore the utility and versatility of the framework. The first analysis develops a model for complex dynamic behavior of themes in collections of text documents. Documents are modeled as a “bag of words”, and the multinomial distribution is used to characterize uncertainty in the vocabulary terms appearing in each document. State-space models for the natural parameters of the multinomial distribution induce autocorrelation in themes and their proportional representation in the corpus over time.

The second analysis develops a dynamic mixed membership model for Poisson counts. The model is applied to a collection of time series which record neuron level firing patterns in rhesus monkeys. The monkey is exposed to two sounds simultaneously, and Gaussian processes are used to smoothly model the time-varying rate at which the neuron’s firing pattern fluctuates between features associated with each sound in isolation.

The third analysis presents a switching dynamic generalized linear model for the time-varying home run totals of professional baseball players. The model endows each player with an age specific latent natural ability class and a performance enhancing drug (PED) use indicator. As players age, they randomly transition through a sequence of ability classes in a manner consistent with traditional aging patterns. When the performance of the player significantly deviates from the expected aging pattern, he is identified as a player whose performance is consistent with PED use.

All three models provide a mechanism for sharing information across related series locally in time. The models are fit with variations on the P ́olya-Gamma Gibbs sampler, MCMC convergence diagnostics are developed, and reproducible inference is emphasized throughout the dissertation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uncertainty quantification (UQ) is both an old and new concept. The current novelty lies in the interactions and synthesis of mathematical models, computer experiments, statistics, field/real experiments, and probability theory, with a particular emphasize on the large-scale simulations by computer models. The challenges not only come from the complication of scientific questions, but also from the size of the information. It is the focus in this thesis to provide statistical models that are scalable to massive data produced in computer experiments and real experiments, through fast and robust statistical inference.

Chapter 2 provides a practical approach for simultaneously emulating/approximating massive number of functions, with the application on hazard quantification of Soufri\`{e}re Hills volcano in Montserrate island. Chapter 3 discusses another problem with massive data, in which the number of observations of a function is large. An exact algorithm that is linear in time is developed for the problem of interpolation of Methylation levels. Chapter 4 and Chapter 5 are both about the robust inference of the models. Chapter 4 provides a new criteria robustness parameter estimation criteria and several ways of inference have been shown to satisfy such criteria. Chapter 5 develops a new prior that satisfies some more criteria and is thus proposed to use in practice.