907 resultados para Sustained drug delivery


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The alpha-conotoxin MII is a 16 amino acid long peptide toxin isolated from the marine snail, Conus magus. This toxin has been found to be a highly selective and potent inhibitor of neuronal nicotinic acetylcholine receptors of the subtype alpha3beta2. To improve the bioavailability of this peptide, we have coupled to the N-terminus of conotoxin MII, 2-amino-D,L-dodecanoic acid (Laa) creating a lipidic linear peptide which was then successfully oxidised to produce the correctly folded conotoxin MII construct.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective To investigate the effect of lipophilicity on the percutaneous penetration of a homologous series of alcohols through canine skin Design Skin harvested from Greyhound thorax was placed in Franz-type diffusion cells and the in vitro passage of radio-labelled (C-14) alcohols (ethanol, butanol, hexanol and octanol (Log P 0.19 - 3.0)) through separate skin sections was measured in replicates of five. Permeability coefficient (k(P), cm/h), maximum flux (J(max), mol/cm(2)/h) and residue remaining within the skin were determined. Results The k(P) increased with increasing lipophilicity (6.2 x 10(-4) +/- 1.6 x 10(-4) cm/h for ethanol to 1.8 x 10(-2) 3.6 x 10(-3) cm/h for octanol). Alcohol residues remaining within each skin sample followed a similar pattern. An exponential decrease in Jmax with increasing lipophilicity was observed. Conclusion Changes in canine skin permeability occur with increasing alcohol lipophilicity. This finding has practical consequences for the design of topical formulations and optimisation of drug delivery through animal skin.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In recent years Ionic Liquids (ILs) are being applied in life sciences. ILs are being produce with active pharmaceutical drugs (API) as they can reduce polymorphism and drug solubility problems [1] Also ILs are being applied as a drug delivery device in innovative therapies What is appealing in ILs is the ILs building up platform, the counter-ion can be carefully chosen in order to avoid undesirable side effects or to give innovative therapies in which two active ions are paired. This work shows ILs based on ampicillin (an anti-bacterial agent) and ILs based on Amphotericin B. Also we show studies that indicate that ILs based on Ampicillin could reverse resistance in some bacteria. The ILs produced in this work were synthetized by the neutralization method described in Ferraz et. al. [2] Ampicillin anion was combined with the following organic cations 1-ethyl-3-methylimidazolium, [EMIM]; 1-hydroxy-ethyl-3-methylimidazolium, [C2OHMIM]; choline, [cholin]; tetraethylammonium, [TEA]; cetylpyridinium, [C16pyr] and trihexyltetradecylphosphonium, [P6,6,6,14]. Amphotericin B was combined with [C16pyr], [cholin] and 1-metohyethyl-3-methylimidazolium, [C3OMIM]. The ILs-APIs based on ampicillin[2] were tested against sensitive Gram-negative bacteria Escherichia coli ATCC 25922 and Klebsiella pneumonia (clinical isolated), as well as on Gram positive Staphylococcus Aureus ATCC 25923, Staphylococcus epidermidis and Enterococcus faecalis. The arising resistance developed by bacteria to antibiotics is a serious public health threat and needs new and urgent measures. We study the bacterial activity of these compounds against a panel of resistant bacteria (clinical isolated strains): E. coli CTX M9, E. coli TEM CTX M9, E. coli TEM1, E. coli CTX M2, E. coli AmpC Mox2. In this work we demonstrate that is possible to produce ILs from anti-bacterial and anti-fungal compounds. We show here that the new ILs can reverse the bacteria resistance. With the careful choice of the organic cation, it is possible to create important biological and physic-chemical properties. This work also shows that the ion-pair is fundamental in ampicillin mechanism of action.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The development of scaffolds that combine the delivery of drugs with the physical support provided by electrospun fibres holds great potential in the field of nerve regeneration. Here it is proposed the incorporation of ibuprofen, a well-known non-steroidal anti-inflammatory drug, in electrospun fibres of the statistical copolymer poly(trimethylene carbonate-co-ε-caprolactone) [P(TMC-CL)] to serve as a drug delivery system to enhance axonal regeneration in the context of a spinal cord lesion, by limiting the inflammatory response. P(TMC-CL) fibres were electrospun from mixtures of dichloromethane (DCM) and dimethylformamide (DMF). The solvent mixture applied influenced fibre morphology, as well as mean fibre diameter, which decreased as the DMF content in solution increased. Ibuprofen-loaded fibres were prepared from P(TMC-CL) solutions containing 5% ibuprofen (w/w of polymer). Increasing drug content to 10% led to jet instability, resulting in the formation of a less homogeneous fibrous mesh. Under the optimized conditions, drug-loading efficiency was above 80%. Confocal Raman mapping showed no preferential distribution of ibuprofen in P(TMC-CL) fibres. Under physiological conditions ibuprofen was released in 24h. The release process being diffusion-dependent for fibres prepared from DCM solutions, in contrast to fibres prepared from DCM-DMF mixtures where burst release occurred. The biological activity of the drug released was demonstrated using human-derived macrophages. The release of prostaglandin E2 to the cell culture medium was reduced when cells were incubated with ibuprofen-loaded P(TMC-CL) fibres, confirming the biological significance of the drug delivery strategy presented. Overall, this study constitutes an important contribution to the design of a P(TMC-CL)-based nerve conduit with anti-inflammatory properties.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent advances in vacuum sciences and applications are reviewed. Novel optical interferometer cavity devices enable pressure measurements with ppm accuracy. The innovative dynamic vacuum standard allows for pressure measurements with temporal resolution of 2 ms. Vacuum issues in the construction of huge ultra-high vacuum devices worldwide are reviewed. Recent advances in surface science and thin films include new phenomena observed in electron transport near solid surfaces as well as novel results on the properties of carbon nanomaterials. Precise techniques for surface and thin-film characterization have been applied in the conservation technology of cultural heritage objects and recent advances in the characterization of biointerfaces are presented. The combination of various vacuum and atmospheric-pressure techniques enables an insight into the complex phenomena of protein and other biomolecule conformations on solid surfaces. Studying these phenomena at solid-liquid interfaces is regarded as the main issue in the development of alternative techniques for drug delivery, tissue engineering and thus the development of innovative techniques for curing cancer and cardiovascular diseases. A review on recent advances in plasma medicine is presented as well as novel hypotheses on cell apoptosis upon treatment with gaseous plasma. Finally, recent advances in plasma nanoscience are illustrated with several examples and a roadmap for future activities is presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The efficacy, cellular uptake and specific transport of dietary antioxidants to target organs, tissues and cells remains the most important setback for their application in the treatment of oxidative-stress related disorders and in particular in neurodegenerative diseases, as brain targeting remains a still unsolved challenge. Nanotechnology based delivery systems can be a solution for the above mentioned problems, specifically in the case of targeting dietary antioxidants with neuroprotective activity. Nanotechnology-based delivery systems can protect antioxidants from degradation, improve their physicochemical drug-like properties and in turn their bioavailability. The impact of nanomedicine in the improvement of the performance of dietary antioxidants, as protective agents in oxidative- stress events, specifically through the use of drug delivery systems, is highlighted in this review as well as the type of nanomaterials regularly used for drug delivery purposes. From the data one can conclude that the research combining (dietary) antioxidants and nanotechnology, namely as a therapeutic solution for neurodegenerative diseases, is still in a very early stage. So, a huge research area remains to be explored that hopefully will yield new and effective neuroprotective therapeutic agents in a foreseeable future.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Biotecnologia

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Química Sustentável

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Biosensors have opened new horizons in biomedical analysis, by ensuring increased assay speed and flexibility, and allowing point-of-care applications, multi-target analyses, automation and reduced costs of testing. This has been a result of many studies merging nanotechnology with biochemistry over the years, thereby enabling the creation of more suitable environments to biological receptors and their substitution by synthetic analogue materials. Sol-gel chemistry, among other materials, is deeply involved in this process. Sol-gel processing allows the immobilization of organic molecules, biomacromolecules and cells maintaining their properties and activities, permitting their integration into different transduction devices, of electrochemical or optical nature, for single or multiple analyses. Sol-gel also allows to the production of synthetic materials mimicking the activity of natural receptors, while bringing advantages, mostly in terms of cost and stability. Moreover, the biocompatibility of sol-gel materials structures of biological nature allowed the use of these materials in emerging in vivo applications. In this chapter, biosensors for biomedical applications based on sol-gel derived composites are presented, compared and described, along with current emerging applications in vivo, concerning drug delivery or biomaterials. Sol-gel materials are shown as a promising tool for current, emerging and future medical applications. - See more at: http://www.eurekaselect.com/127191/article#sthash.iPqqyhox.dpuf

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertation to obtain the Master Degree in Biotechnology

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Doctorate in Biology, Specialty in Biotechnology

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Polymeric particulate-systems are of great relevance due to their possible biomedical applications, among them as carriers for the nano- or microencapsulation of drugs. However, due to their unique specific properties, namely small size range, toxicity issues must be discarded before allowing its use on health-related applications. Several polymers, as poly(methyl methacrylate) (PMMA), have proved to be suitable for the preparation of particulate-systems. However, a major drawback of its use refers to incomplete drug release from particles matrix. Recent strategies to improve PMMA release properties mention the inclusion of other acrylic polymers as Eudragit (EUD) on particles formulation. Though PMMA and EUD are accepted by the FDA as biocompatible, their safety on particle composition lacks sufficient toxicological data. The main objective of this thesis was to evaluate the biological effects of engineered acrylic particulate-systems. Preparation, physicochemical characterization and in vitro toxicity evaluation were assessed on PMMA and PMMA-EUD (50:50) particles. The emulsification-solvent evaporation methodology allowed the preparation of particles with spherical and smooth surfaces within the micrometer range (±500 nm), opposing surface charges and different levels of hydrophobicity. It was observed that particles physicochemical properties (size and charge) were influenced by biological media composition, such as serum concentration, ionic strength or pH. In what concerns to the in vitro toxicological studies, particle cellular uptake was observed on different cell lines (macrophages, osteoblasts and fibroblasts). Cytotoxicity effects were only found after 72 h of cells exposure to the particles, while no oxidative damage was observed neither on osteoblasts nor fibroblasts. Also, no genotoxicity was found in fibroblast using the comet assay to assess DNA damage. This observation should be further confirmed with other validated genotoxicity assays (e.g. Micronucleus Assay). The present study suggests that the evaluated acrylic particles are biocompatible, showing promising biological properties for potential use as carriers in drug-delivery systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ionic Liquids (ILs) belong to a class of compounds with unusual properties: very low vapour pressure; high chemical and thermal stability and the ability to dissolve a wide range of substances. A new field in research is evaluating the possibility to use natural chiral biomolecules for the preparation of chiral ionic liquids (CILs). This important challenge in synthetic chemistry can open new avenues of research in order to avoid some problems related with the intrinsic biodegradability and toxicity associated to conventional ILs. The research work developed aimed for the synthesis of CILs, their characterization and possible applications, based on biological moieties used either as chiral cations or anions, depending on the synthetic manipulation of the derivatives. Overall, a total of 28 organic salts, including CILs were synthesized: 9 based on L-cysteine derivatives, 12 based on L-proline, 3 based on nucleosides and 4 based on nucleotides. All these new CILs were completely characterized and their chemical and physical properties were evaluated. Some CILs based on L-cysteine have been applied for discrimination processes, including resolution of racemates and as a chiral catalyst for asymmetric Aldol condensation. L-proline derived CILs were also studied as chiral catalysts for Michael reaction. In parallel, the interactions of macrocyclic oligosugars called cyclodextrins (CDs) with several ILs were studied. It was possible to improve the solubility of CDs in water and serum. Additionally, fatty acids and steroids showed an increase in water solubility when ILs-CDs systems were used. The development of efficient and selective ILs-CDs systems is indispensable to expand the range of their applications in host-guest interactions, drug delivery systems or catalytic reactions. Novel salts derived from nucleobases were used in order to enhance the fluorescence in aqueous solution. Additionally, preliminary studies regarding ethyl lactate as an alternative solvent for asymmetric organocatalysis were performed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

RESUMO - Numa época de constrangimento orçamental, os hospitais do SNS vêm-se na obrigação de melhorar a eficiência de utilização dos recursos disponíveis, por forma a contribuir para o seu equilíbrio financeiro. Cabe a cada prestador analisar a sua posição, avaliar as suas oportunidades e adoptar estratégias que a curto, médio ou longo prazo se traduzam numa efetiva melhoria na eficiência. A análise e o controlo do desperdício associado à prestação de cuidados de saúde apresentam-se, globalmente, como uma dessas oportunidades. Neste trabalho são exploradas oportunidades de redução de desperdício em medicamentos, numa perspectiva meramente operacional, a nível das funções desempenhadas pelos Serviços Farmacêuticos (SF). No hospital em estudo acompanhou-se as diferentes linhas de produção dos SF, nomeadamente as tarefas envolvidas no processo de Distribuição Individual Diária em Dose Unitária, na distribuição de medicamentos para o Serviço de Urgências (SU) e na preparação de citotóxicos e imunomoduladores para o Hospital de Dia de Oncologia. Durante o ano de 2013, os SF devolveram aos fornecedores 0,07% e abateram 0,05% da despesa em medicamentos. A análise dos erros de medicação registados reflete o tipo de distribuição adotado para a maioria dos serviços de internamento do hospital. As melhorias encontradas a este nível passam pelo reforço de recursos humanos a desempenhar as tarefas de dispensa de medicamentos mas também pela implementação de uma cultura de registo de erros e acidentes, baseada no sistema de informação, para que se consiga quantificar o desperdício associado e agir com vista à optimização do circuito. A relação entre o método de distribuição adotado para o SU e a utilização do medicamento neste serviço foi apenas investigada para os medicamentos de registo individual de administração. Foi determinado um índice de eficiência de utilização de 67,7%, entre o dispensado e o administrado. Às discrepâncias encontradas está associado um custo de 32 229,6 € para o ano de 2013. Constatou-se também que, a nível do consumo de citotóxicos e imunomoduladores houve, durante o mês de abril de 2013, um índice de desperdício médio de 14,7%, entre o prescrito e o consumido, que se traduziu num custo do desperdício mensal de 13 070,9 €. Com base no desperdício mensal estimou-se que o desperdício anual associado à manipulação de citotóxicos e imunomoduladores deverá corresponder a 5,5% da despesa anual do serviço com estes medicamentos. Não obstante as limitações encontradas durantes o trabalho, e parte do desperdício apurado ser inevitável, demonstrou-se que o desperdício em medicamentos pode traduzir-se numa fatia não negligenciável mas controlável da despesa do hospital em estudo. No seguimento do seu conhecimento, a sua contenção pode ter um impacto na redução de despesa a curto-médio prazo, sem a necessidade de racionamento da utilização de medicamentos e sem alterar os padrões de qualidade assistencial exigidos pela tutela e pelos doentes. Por último, são apresentadas recomendações para a redução do desperdício em medicamentos, adequadas a cada uma das dimensões analisadas.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

De forma a melhorar a precisão dos resultados obtidos com instrumentos doseadores de líquidos utilizados em ambiente clínico, foi submetido e aprovado um projeto internacional denominado Metrology for Drug Delivery (MeDD), financiado pela União Europeia, em que o Instituto Português da Qualidade (IPQ) é um dos sete participantes. Ao nível nacional, todo o projeto foi desenvolvido no Laboratório de Volume (LVO) do IPQ, em parceria com o Departamento de Engenharia Mecânica e Industrial (DEMI) da Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa (FCT/UNL), a B.Braun Portugal e o Hospital Garcia de Orta (HGO). A presente dissertação centra-se na elaboração de um procedimento de calibração de sistemas doseadores de fluidos, usando como ponto de partida um sistema padrão de micro caudal desenvolvido anteriormente pelo LVO em colaboração com a FCT-UNL/DEMI. Nesta dissertação são apresentados estudos de desempenho realizados em sistemas utilizados no hospital. Os instrumentos doseadores de fluidos mais usuais nos hospitais são as seringas perfusoras e as bombas peristálticas, que têm como função fornecer os fluidos necessários para hidratar, nutrir ou administrar fármacos. Com o objetivo de estudar o desempenho destes equipamentos em diferentes situações, tais como a influência da administração de fluidos mais viscosos em comparação com água, o tempo de resposta dos instrumentos e o impacto dos acessórios na linha de perfusão, realizaram-se diversos ensaios. Através dos ensaios realizados foi possível determinar o erro e a incerteza associada a cada equipamento para cada experiência realizada. A maioria dos resultados obtidos com os sistemas doseadores de fluidos permitiram verificar que os valores da incerteza dos caudais eram inferiores ao erro máximo admissível indicado pelo fabricante e serviram de base para a elaboração de um procedimento técnico.