956 resultados para Sun: incompressible waves
Resumo:
The orbits of the stars in the disk of the Galaxy, and their passages through the Galactic spiral arms, are a rarely mentioned factor of biosphere stability which might be important for long-term planetary climate evolution, with a possible bearing on mass extinctions. The Sun lies very near the co-rotation radius, where stars revolve around the Galaxy in the same period as the density wave perturbations of the spiral arms. conventional wisdom generally considers that this status makes for few passages through the spiral arms. Controversy still surrounds whether time spent inside or around spiral arms is dangerous to biospheres and conductive to mass extinctions. Possible threats include giant molecular clouds disturbing the Oort comet cloud and provoking heavy bombardment: a higher exposure to cosmic rays near star forming regions triggering increased cloudiness in Earth atmosphere and ice ages; and the desctruction of Earth's ozone layer posed by supernova explosiosn. We present detailed calculations of the history of spiral arm passages for all 212 solar-type stars nearer than 20 parsecs, including the total time spent inside armsin the last 500 Myr, when the spiral arm position can be traced with good accuracy. We found that there is a large diversity of stellar orbits in the solar neighborhood, and the time fraction spent inside spiral arms can vary from a few percent to nearly half the time. The Sun, despite its proximity to the galactic co-rotation radius, has exceptionally low eccentricity and a low vertical velocity component, and therefore spends 30% of its lifetime crossing the spiral arms, more than most nearby stars. We discuss the possible implications of this fact to the long-term habitability of the Earth, and possible correlations of the Sun's passage through the spiral arms with the five great mass extinctions of the Earth's biosphere from the Late Ordovician to the Cretaceous-Tertiary.
Resumo:
[EN] Background: Body image disturbance is an increasing problem in Western societies and is associated with a number of mental health outcomes including anorexia, bulimia, body dysmorphia, and depression. The aim of this study was to assess the association between body image disturbance and the incidence of depression. Methods: This study included 10,286 participants from a dynamic prospective cohort of Spanish university graduates, who were followed-up for a median period of 4.2 years (Seguimiento Universidad de Navarra – the SUN study). The key characteristic of the study is the permanently open recruitment that started in 1999. The baseline questionnaire included information about body mass index (BMI) and the nine figure schemes that were used to assess body size perception. These variables were grouped according to recommended classifications and the difference between BMI and body size perception was considered as a proxy of body image disturbance. A subject was classified as an incident case of depression if he/she was initially free of depression and reported a physician-made diagnosis of depression and/or the use of antidepressant medication in at least one of the follow-up questionnaires. The association between body image disturbance and the incidence of depression was estimated by calculating the multivariable adjusted Odds Ratio (OR) and its 95% Confidence Interval (95% CI), using logistic regression models. Results: The cumulative incidence of depression during follow-up in the cohort was 4.8%. Men who underestimated their body size had a high percentage of overweight and obesity (50.1% and 12.6%, respectively), whereas women who overestimated their body size had a high percentage of underweight (87.6%). The underestimation exhibited a negative association with the incidence of depression among women (OR: 0.72, 95% CI: 0.54 – 0.95), but this effect disappeared after adjusting for possible confounding variables. The proportion of participants who correctly perceived their body size was high (53.3%) and gross misperception was seldom found, with most cases selecting only one silhouette below (42.7%) or above (2.6%) their actual BMI. Conclusion: We found no association between body image disturbance and subsequent depression in a cohort of university graduates in Spain.
Resumo:
Programa de doctorado: Salud pública (epidemiología, planificación y nutrición)
Resumo:
Calificación: Matrícula de Honor
Resumo:
The Ph.D. thesis describes the simulations of different microwave links from the transmitter to the receiver intermediate-frequency ports, by means of a rigorous circuit-level nonlinear analysis approach coupled with the electromagnetic characterization of the transmitter and receiver front ends. This includes a full electromagnetic computation of the radiated far field which is used to establish the connection between transmitter and receiver. Digitally modulated radio-frequency drive is treated by a modulation-oriented harmonic-balance method based on Krylov-subspace model-order reduction to allow the handling of large-size front ends. Different examples of links have been presented: an End-to-End link simulated by making use of an artificial neural network model; the latter allows a fast computation of the link itself when driven by long sequences of the order of millions of samples. In this way a meaningful evaluation of such link performance aspects as the bit error rate becomes possible at the circuit level. Subsequently, a work focused on the co-simulation an entire link including a realistic simulation of the radio channel has been presented. The channel has been characterized by means of a deterministic approach, such as Ray Tracing technique. Then, a 2x2 multiple-input multiple-output antenna link has been simulated; in this work near-field and far-field coupling between radiating elements, as well as the environment factors, has been rigorously taken into account. Finally, within the scope to simulate an entire ultra-wideband link, the transmitting side of an ultrawideband link has been designed, and an interesting Front-End co-design technique application has been setup.
Resumo:
[EN] This work studies the structure-soil-structure interaction (SSSI) effects on the dynamic response of nearby piled structures under obliquely-incident shear waves. For this purpose, a three-dimensional, frequency-domain, coupled boundary element-finite (BEM-FEM) model is used to analyse the response of configuration of three buildings aligned parallel to the horizontal component of the wave propagation direction.
Resumo:
Wave breaking is an important coastal process, influencing hydro-morphodynamic processes such as turbulence generation and wave energy dissipation, run-up on the beach and overtopping of coastal defence structures. During breaking, waves are complex mixtures of air and water (“white water”) whose properties affect velocity and pressure fields in the vicinity of the free surface and, depending on the breaker characteristics, different mechanisms for air entrainment are usually observed. Several laboratory experiments have been performed to investigate the role of air bubbles in the wave breaking process (Chanson & Cummings, 1994, among others) and in wave loading on vertical wall (Oumeraci et al., 2001; Peregrine et al., 2006, among others), showing that the air phase is not negligible since the turbulent energy dissipation involves air-water mixture. The recent advancement of numerical models has given valuable insights in the knowledge of wave transformation and interaction with coastal structures. Among these models, some solve the RANS equations coupled with a free-surface tracking algorithm and describe velocity, pressure, turbulence and vorticity fields (Lara et al. 2006 a-b, Clementi et al., 2007). The single-phase numerical model, in which the constitutive equations are solved only for the liquid phase, neglects effects induced by air movement and trapped air bubbles in water. Numerical approximations at the free surface may induce errors in predicting breaking point and wave height and moreover, entrapped air bubbles and water splash in air are not properly represented. The aim of the present thesis is to develop a new two-phase model called COBRAS2 (stands for Cornell Breaking waves And Structures 2 phases), that is the enhancement of the single-phase code COBRAS0, originally developed at Cornell University (Lin & Liu, 1998). In the first part of the work, both fluids are considered as incompressible, while the second part will treat air compressibility modelling. The mathematical formulation and the numerical resolution of the governing equations of COBRAS2 are derived and some model-experiment comparisons are shown. In particular, validation tests are performed in order to prove model stability and accuracy. The simulation of the rising of a large air bubble in an otherwise quiescent water pool reveals the model capability to reproduce the process physics in a realistic way. Analytical solutions for stationary and internal waves are compared with corresponding numerical results, in order to test processes involving wide range of density difference. Waves induced by dam-break in different scenarios (on dry and wet beds, as well as on a ramp) are studied, focusing on the role of air as the medium in which the water wave propagates and on the numerical representation of bubble dynamics. Simulations of solitary and regular waves, characterized by both spilling and plunging breakers, are analyzed with comparisons with experimental data and other numerical model in order to investigate air influence on wave breaking mechanisms and underline model capability and accuracy. Finally, modelling of air compressibility is included in the new developed model and is validated, revealing an accurate reproduction of processes. Some preliminary tests on wave impact on vertical walls are performed: since air flow modelling allows to have a more realistic reproduction of breaking wave propagation, the dependence of wave breaker shapes and aeration characteristics on impact pressure values is studied and, on the basis of a qualitative comparison with experimental observations, the numerical simulations achieve good results.
Resumo:
CONCLUSIONS The focus of this work was the investigation ofanomalies in Tg and dynamics at polymer surfaces. Thethermally induced decay of hot-embossed polymer gratings isstudied using laser-diffraction and atomic force microscopy(AFM). Monodisperse PMMA and PS are selected in the Mwranges of 4.2 to 65.0 kg/mol and 3.47 to 65.0 kg/mol,respectively. Two different modes of measurement were used:the one mode uses temperature ramps to obtain an estimate ofthe near-surface glass temperature, Tdec,0; the other modeinvestigates the dynamics at a constant temperature aboveTg. The temperature-ramp experiments reveal Tdec,0 valuesvery close to the Tg,bulk values, as determined bydifferential scanning calorimetry (DSC). The PMMA of65.0 kg/mol shows a decreased value of Tg, while the PS samples of 3.47 and 10.3 kg/mol (Mw