977 resultados para Suites (Violin and harpsichord)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we investigate the influence of extractives, lignin and holocellulose contents on performance index (PI) of seven woods used or tested for violin bows. Woods with higher values of this index (PI = root MOE/rho, where MOE is modulus of elasticity and rho is density) have a higher bending stiffness at a given mass, which can be related to bow wood quality. Extractive content was negatively correlated with PI in Caesalpinia echinata, Hanclroanthus sp. and Astronium lecointei. In C. echinata holocellulose was positively correlated with PI. These results need to be further explored with more samples and by testing additional wood properties. Although the chemical constituents could provide an indication of quality, it is not possible to establish appropriate woods for bows solely by examining their chemical constituents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The NNW-trending Nova Lacerda tholeiitic dike swarm in Mato Grosso State, Central Brazil, intrudes the Nova Lacerda granite (1.46 Ga) and the Jauru granite-greenstone terrain (ca. 1.79-1.77 Ga). The swarm comprises diabases I and II and amphibolites emplaced at ca. 1.38 Ga. Geochemical data indicate that these are evolved tholeiites characterized by high LILE/HSFE and LREE/HSFE ratios. Isotopic modelling yields positive epsilon(Nd)(T) values (+0.86 to +2.65), whereas values for epsilon(Sr)(T) range from positive to negative (+1.96 to -5.56). Crustal contamination did not play a significant petrogenetic role, as indicated by a comparison of isotopic data (Sr-Nd) from both dikes and country rocks, and by the relationship between isotopic and geochemical parameters (SiO2, K2O, Rb/Sr, and La/Yb) of the dikes. We attribute the origin of these tholeiites to fractional crystallization of evolved melts derived from a heterogeneous mantle source. Comparison of the geochemical and isotopic data of the studied swarm and other tholeiitic Mesoproterozoic mafic intrusions of the SWAmazonian Craton the Serra da Providencia, Colorado, and Nova Brasilandia bimodal suites - indicates that parental melts of the Nova Lacerda swarm were derived from the most enriched mantle source. This enrichment was probably caused by the stronger influence of the EMI component on the DMM end-member. These data, coupled with trace element bulk-rock geochemistry of the country rocks, and comparisons with the Colorado Complex of similar age, suggest a continental-margin arc setting for the emplacement of the Nova Lacerda dikes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We use data from about 700 GPS stations in the EuroMediterranen region to investigate the present-day behavior of the the Calabrian subduction zone within the Mediterranean-scale plates kinematics and to perform local scale studies about the strain accumulation on active structures. We focus attenction on the Messina Straits and Crati Valley faults where GPS data show extentional velocity gradients of ∼3 mm/yr and ∼2 mm/yr, respectively. We use dislocation model and a non-linear constrained optimization algorithm to invert for fault geometric parameters and slip-rates and evaluate the associated uncertainties adopting a bootstrap approach. Our analysis suggest the presence of two partially locked normal faults. To investigate the impact of elastic strain contributes from other nearby active faults onto the observed velocity gradient we use a block modeling approach. Our models show that the inferred slip-rates on the two analyzed structures are strongly impacted by the assumed locking width of the Calabrian subduction thrust. In order to frame the observed local deformation features within the present- day central Mediterranean kinematics we realyze a statistical analysis testing the indipendent motion (w.r.t. the African and Eurasias plates) of the Adriatic, Cal- abrian and Sicilian blocks. Our preferred model confirms a microplate like behaviour for all the investigated blocks. Within these kinematic boundary conditions we fur- ther investigate the Calabrian Slab interface geometry using a combined approach of block modeling and χ2ν statistic. Almost no information is obtained using only the horizontal GPS velocities that prove to be a not sufficient dataset for a multi-parametric inversion approach. Trying to stronger constrain the slab geometry we estimate the predicted vertical velocities performing suites of forward models of elastic dislocations varying the fault locking depth. Comparison with the observed field suggest a maximum resolved locking depth of 25 km.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When examined petrographically the granites of Oklahoma show a marked similarity to the granites of South­eastern Missouri. The same heavy accessory mineral suites are present in the granites of both regions and include: fluorite, zircon, apatite, titanite and epidote. This similarity was further shown by the actual correlation of the heavy mineral suites by types, these types being, based on the heavy mineral distributions of the Missouri Granites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Large-scale tectonic processes introduce a range of crustal lithologies into the Earth's mantle. These lithologies have been implicated as sources of compositional heterogeneity in mantle-derived magmas. The model being explored here assumes the presence of widely dispersed fragments of residual eclogite (derived from recycled oceanic crust), stretched and stirred by convection in the mantle. Here we show with an experimental study that these residual eclogites continuously melt during upwelling of such heterogeneous mantle and we characterize the melting reactions and compositional changes in the residue minerals. The chemical exchange between these partial melts and more refractory peridotite leads to a variably metasomatised mantle. Re-melting of these metasomatised peridotite lithologies at given pressures and temperatures results in diverse melt compositions, which may contribute to the observed heterogeneity of oceanic basalt suites. We also show that heterogeneous upwelling mantle is subject to diverse local freezing, hybridization and carbonate-carbon-silicate redox reactions along a mantle adiabat.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The flows and sills drilled at Sites 794 and 797 in the Yamato Basin of the Japan Sea are subalkalic, olivine, and/or plagioclase phyric basalts. Compositionally, the rocks can be divided into a depleted, low-K type and an enriched, relatively high-K type. In addition, two contrasting evolution trends are reflected in the rock compositions, which allow four different magmatic suites to be identified. It is suggested that the depleted or enriched nature of these suites represent primary characteristics, while the different evolution trends are related to fractionation processes in crustal magma chambers. A tholeiitic evolution trend, with increasing FeO and TiO2 and decreasing Al2O3, can be modelled by fractional crystallization of 40%-50% plagioclase, olivine, and augite. A mildly calc-alkalic evolution trend, with decreasing FeO, increasing Al2O3, and nearly constant TiO2, can be modelled by 8%-12% olivine fractionation. Mineralogical evidence suggests that these differences may be related to the effect of small amounts of water during crystallization of the calc-alkalic suites. The tholeiitic suites occur in the lower parts of the drill cores, while the calc-alkalic suites occur in the upper parts. This suggests a complex tectonic and magmatic evolution, perhaps reflecting a transition between calc-alkalic magmatism related to subduction zone activity and tholeiitic magmatism related to back-arc spreading. Furthermore, any magmatic model must be able to account for the range in parental magmas from depleted to enriched throughout the tectonic history of the Yamato Basin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sarcya 1 dive explored a previously unknown 12 My old submerged volcano, labelled Cornacya. A well developed fracturation is characterised by the following directions: N 170 to N-S, N 20 to N 40, N 90 to N 120, N 50 to N 70, which corresponds to the fracturation pattern of the Sardinian margin. The sampled lavas exhibit features of shoshonitic suites of intermediate composition and include amphibole-and mica-bearing lamprophyric xenoliths which are geochemically similar to Ti-poor lamproites. Mica compositions reflect chemical exchanges between the lamprophyre and its shoshonitic host rock suggesting their simultaneous emplacement. Nd compositions of the Cornacya K-rich suite indicate that continental crust was largely involved in the genesis of these rocks. The spatial association of the lamprophyre with the shoshonitic rocks is geochemically similar to K-rich and TiO2-poor igneous suites, emplaced in post-collisional settings. Among shoshonitic rocks, sample SAR 1-01 has been dated at 12.6±0.3 My using the 40Ar/39Ar method with a laser microprobe on single grains. The age of the Cornacya shoshonitic suite is similar to that of the Sisco lamprophyre from Corsica, which similarly is located on the western margin of the Tyrrhenian Sea. Thus, the Cornacya shoshonitic rocks and their lamprophyric xenolith and the Sisco lamprophyre could represent post-collisional suites emplaced during the lithospheric extension of the Corsica-Sardinia block, just after its rotation and before the Tyrrhenian sea opening. Drilling on the Sardinia margin (ODP Leg 107) shows that the upper levels of the present day margin (Hole 654) suffered tectonic subsidence before the lower part (Hole 652). The structure of this lower part is interpreted as the result of an eastward migration of the extension during Late Miocene and Early Pliocene times. Data of Cornacya volcano are in good agreement with this model and provide good chronological constraints for the beginning of the phenomenon.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Collisional and post-collisional volcanic rocks in the Ulubey (Ordu) area at the western edge of the Eastern Pontide Tertiary Volcanic Province (EPTVP) in NE Turkey are divided into four suites; Middle Eocene (49.4-44.6 Ma) aged Andesite-Trachyandesite (AT), Trachyandesite-Trachydacite-Rhyolite (TTR), Trachydacite-Dacite (TD) suites, and Middle Miocene (15.1 Ma) aged Trachybasalt (TB) suite. Local stratigraphy in the Ulubey area starts with shallow marine environment sediments of the Paleocene-Eocene time and then continues extensively with sub-aerial andesitic to rhyolitic and rare basaltic volcanism during Eocene and Miocene time, respectively. Petrographically, the volcanic rocks are composed primarily of andesites/trachyandesites, with minor trachydacites/rhyolites, basalts/trachybasalts and pyroclastics, and show porphyric, hyalo-microlitic porphyric and rarely glomeroporphyric, intersertal, intergranular, fluidal and sieve textures. The Ulubey (Ordu) volcanic rocks indicate magma evolution from tholeiitic-alkaline to calc-alkaline with medium-K contents. Primitive mantle normalized trace element and chondrite normalized rare earth element (REE) patterns show that the volcanic rocks have moderate light rare earth element (LREE)/heavy rare earth element (HREE) ratios relative to E-Type MORB and depletion in Nb, Ta and Ti. High Th/Yb ratios indicate parental magma(s) derived from an enriched source formed by mixing of slab and asthenospheric melts previously modified by fluids and sediments from a subduction zone. All of the volcanic rocks share similar incompatible element ratios (e.g., La/Sm, Zr/Nb, La/Nb) and chondrite-normalized REE patterns, indicating that the basic to acidic rocks originated from the same source. The volcanic rocks were produced by the slab dehydration-induced melting of an existing metasomatized mantle source, and the fluids from the slab dehydration introduced significant large ion lithophile element (LILE) and LREE to the source, masking its inherent HFSE-enriched characteristics. The initial 87Sr/86Sr (0.7044-0.7050) and eNd (-0.3 to +3.4) ratios of the volcanics suggest that they originated from an enriched lithospheric mantle source with low Sm/Nd ratios. Integration of the geochemical, petrological and isotopical with regional and local geological data suggest that the Tertiary volcanic rocks from the Ulubey (Ordu) area were derived from an enriched mantle, which had been previously metasomatized by fluids derived from subducted slab during Eocene to Miocene in collisional and post-collisional extension-related geodynamic setting following Late Mesozoic continental collision between the Eurasian plate and the Tauride-Anatolide platform.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Widespread Lower Cretaceous magmatism occurred along the Indian-Australian/Antarctic margins, and in the juvenile Indian Ocean, during the rifting of eastern Gondwana. The formation of this magmatic province probably began around 120-130 Ma with the eruption of basalts on the Naturaliste Plateau and at Bunbury, western Australia. On the northeast margin of India, activity began around 117 Ma with the Rajmahal continental basalts and associated lamprophyre intrusions. The formation of the Kerguelen Plateau in the Indian Ocean began no later than 114 Ma. Ultramafic lamprophyres (alnoites) were emplaced in the Prince Charles Mountains near the Antarctic continental margin at ~ 110 Ma. These events are considered to be related to a major mantle plume, the remnant of which is situated beneath the region of Kerguelen and Heard islands at the present day. Geochemical data are presented for each of these volcanic suites and are indicative of complex interactions between asthenosphere-derived magmas and the continental lithosphere. Kerguelen Plateau basalts have Sr and Nd isotopic compositions lying outside the field for Indian Ocean mid-ocean ridge basalts (MORB) but, with the exception of Site 738 at the southern end of the plateau, within the range of more recent hotspot basalts from Kerguelen and Heard Islands. However, a number of the plateau tholeiites are characterized by lower 206Pb/204Pb ratios than are basalts from Kerguelen Island, and many also have anomalously high La/Nb ratios. These features suggest that the source of the Kerguelen Plateau basalts suffered contamination by components derived from the Gondwana continental lithosphere. An extreme expression of this lithospheric signature is shown by a tholeiite from Site 738, suggesting that the southernmost part of the Kerguelen Plateau may be underlain by continental crust. The Rajmahal tholeiites mostly fall into two distinct geochemical groups. Some Group I tholeiites have Sr and Nd isotopic compositions and incompatible element abundances, similar to Kerguelen Plateau tholeiites from Sites 749 and 750, indicating that the Kerguelen-Heard mantle plume may have directly furnished Rajmahal volcanism. However, their elevated 207Pb/204Pb ratios indicate that these magmas did not totally escape contamination by continental lithosphere. In contrast to the Group I tholeiites, significant contamination is suggested for Group II Rajmahal tholeiites, on the basis of incompatible element abundances and isotopic compositions. The Naturaliste Plateau and the Bunbury Basalt samples show varying degrees of enrichment in incompatible elements over normal MORB. The Naturaliste Plateau samples (and Bunbury Basalt) have high La/Nb ratios, a feature not inconsistent with the notion that the plateau may consist of stretched continental lithosphere, near the ocean-continent divide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The concentrations of the platinum-group elements (PGE) Ir, Ru, Pt and Pd were determined in 11 abyssal peridotites from ODP Sites 895 and 920, as well in six ultramafic rocks from the Horoman peridotite body, Japan, which is generally thought to represent former asthenospheric mantle. Individual oceanic peridotites from ODP drill cores are characterized by variable absolute and relative PGE abundances, but the average PGE concentrations of both ODP suites are very similar. This indicates that the distribution of the noble metals in the mantle is characterized by small-scale heterogeneity and large-scale homogeneity. The mean Ru/Ir and Pt/Ir ratios of all ODP peridotites are within 15% and 3%, respectively, of CI-chondritic values. These results are consistent with models that advocate that a late veneer of chondritic material provided the present PGE budget of the silicate Earth. The data are not reconcilable with the addition of a significant amount of differentiated outer core material to the upper mantle. Furthermore, the results of petrogenetic model calculations indicate that the addition of sulfides derived from percolating magmas may be responsible for the variable and generally suprachondritic Pd/Ir ratios observed in abyssal peridotites. Ultramafic rocks from the Horoman peridotite have PGE signatures distinct from abyssal peridotites: Pt/Ir and Pd/Ir are correlated with lithophile element concentrations such that the most fertile lherzolites are characterized by non-primitive PGE ratios. This indicates that processes more complex than simple in-situ melt extraction are required to produce the geochemical systematics, if the Horoman peridotite formed from asthenospheric mantle with chondritic relative PGE abundances. In this case, the PGE results can be explained by melt depletion accompanied or followed by mixing of depleted residues with sulfides, with or without the addition of basaltic melt.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pliocene and Pleistocene volcanic glass fragments from Mariana Trough sediments at Sites 453 (16 samples) and 454 (4 samples), located near the western edge of the trough and just west of the spreading axis, respectively, have been analyzed for major elements with an electron microprobe. They derive from volcanic activity on the present Mariana active arc. The glasses from Site 453 are all tholeiitic with a wide range of SiO2 contents. Those less than 2 m.y. old have slightly lower TiO2 and higher K2O contents than the older ones. The glasses from Site 454 are all Pleistocene and resemble the younger glasses at Site 453. Major element compositions of the older basaltic glasses at Site 453 are similar to those of the Mariana Trough basalts drilled on Leg 60. Both older and younger suites of glasses differ from the composition of rocks exposed on the active arc, which are assumed to be younger than any of the samples studied (i.e., about 200,000 y.). A third suite is represented by the arc rocks exposed on the volcanic islands. These have a smaller range of SiO2 contents and contain more A12O3 but less K2O, TiO2, and FeO1 (total Fe as FeO) than the sediment glasses studied. Further, a plot of FeO1 against MgO for the arc rocks does not follow the island arc tholeiite trend of the trough sediment glasses. Using the major element compositions of the arc rocks and sediment glasses, we can recognize three phases of volcanic activity, as indicated. The first evidence of the oldest phase of activity occurs 5 Ma, about 4.5 m.y. after the trough started to form. The second commenced about 2 Ma, and the last, including present-day activity, began within the last 200,000 y. Initially the rocks had major element affinities with the tholeiitic Mariana Trough seafloor, but this influence declined as the trough widened.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During Leg 124, off the Philippines, volcanic material was recovered in deep-sea sediments dating from the late Oligocene in the Celebes Sea Basin, and from the early Miocene in the Sulu Sea Basin. Chemical and petrological studies of fallout ash deposits are used to characterize volcanic pulses and to determine their possible origin. All of the glass and mineral compositions belong to medium-K and high-K calc-alkaline arc-related magmatic suites including high-Al basalts, pyroxene-hornblende andesites, dacites, and rhyolites. Late Oligocene and early Miocene products may have originated from the Sunda arc or from the Sabah-Zamboanga old Sulu arc. Late early Miocene Sulu Sea tuffs originated from the Cagayan arc, whereas early late Miocene fallout ashes are attributed to the Sulu arc. A complex magmatic production is distinguished in the Plio-Quaternary with three sequences of basic to acidic lava suites. Early Pliocene strata registered an important activity in both Celebes Sea and Sulu Sea areas, from the newly born Sangihe arc (low-alumina andesite series) and from the Sulu, Zamboanga, and Negros arcs (high-alumina basalt series and high-K andesite series). In the late Pliocene and the early Pleistocene, renewal of activity affects the Sangihe-Cotobato arc as well as the Sulu and Negros arcs (same magmatic distinctions). The last volcanic pulse took place in the late Pleistocene with revival of all the present arc systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Izu-Bonin forearc basement volcanic rocks recovered from Holes 792E and 793B show the same phenocrystic assemblage (i.e., plagioclase, two pyroxenes, and Fe-Ti oxides ±olivine), but they differ in the crystallization sequence and their phenocryst chemistry. All the igneous rocks have suffered low-grade hydrothermal alteration caused by interaction with seawater. As a result, only clinopyroxenes, plagioclases, and oxides have preserved their primary igneous compositions. The Neogene olivine-clinopyroxene diabasic intrusion (Unit II) recovered from Hole 793B differs from the basement basaltic andesites because it lacks Cr-spinels and contains abundant titanomagnetites (Usp38.5-46.4) and uncommon FeO-rich (FeO = 29%) spinels. It displays petrological and geochemical similarities to the Izu Arc volcanoes and, thus, can be considered as related to Izu-Bonin Arc magmatic activity. The titanomagnetites (Usp28.5-33) in the calc-alkaline andesitic fragments of the Oligocene volcaniclastic breccia in Hole 793B (Unit VI) represent an early crystallization phase. The Plagioclase phenocrysts enclosed in these rocks show oscillatory zoning and are less Ca-rich (An78.6-67.8) than the plagioclase phenocrysts of the diabase sill and the basement basaltic andesites. Their clinopyroxenes are Fe-rich augites (Fs ? 19.4; FeO = 12%) and thus, differ significantly from the clinopyroxenes of the Hole 793B arc-tholeiitic igneous rocks. The 30-32 Ma porphyritic, two-pyroxene andesites recovered from Hole 792E are very similar to the andesitic clasts of the Neogene breccia recovered in Hole 793B (Unit VI). Both rocks have the same crystallization sequence, and similar chemistry of the Fe-Ti oxides, clinopyroxenes, and plagioclases: that is, Ti-rich (Usp25.5-30.4) magnetites, Fe-rich augites, and intensely oscillatory zoned plagioclases with bytownitic cores (An86-63) and labradorite rims (An73-68). They display a calc-alkaline differentiation trend (Taylor et al., this volume). So, the basement highly porphyritic andesites recovered at Hole 792E, and the Hole 793B andesitic clasts of Unit VI show the same petrological and geochemical characteristics, which are that of calc-alkaline suites. These Oligocene volcanic rocks represent likely the remnants of the Izu-Bonin normal arc magmatic activity, before the forearc rifting and extension. The crystallization sequence in the basaltic andesites recovered from Hole 793B is olivine-orthopyroxene-clinopyroxene-plagioclase-Fe-Ti oxides, indicating a tholeiitic differentiation trend for these volcanic rocks. Type i is an olivine-and Cr-spinel bearing basaltic andesite whereas Type ii is a porphyritic pyroxene-rich basaltic andesite. The porphyritic plagioclase-rich basaltic andesite (Type iii) is similar, in most respects, to Type ii lavas but contains plagioclase phenocrysts. The last, and least common lava is an aphyric to sparsely phyric andesite (Type iv). Cr-spinels, included either in the olivine pseudomorphs of Type i lavas or in the groundmass of Type ii lavas, are Cr-rich and Mg-rich. In contrast, Cr-spinels included in clinopyroxenes and orthopyroxenes (Types i and ii lavas) show lower Cr* and Mg* ratios and higher aluminium contents. Orthopyroxenes from all rock types are Mg-rich enstatites. Clinopyroxenes display endiopsidic to augitic compositions and are TiO2 and Al2O3 depleted. All the crystals exhibit strong zoning patterns, usually normal, although, reverse zoning patterns are not uncommon. The plagioclases show compositions within the range of An90-64. The Fe-Ti oxides of the groundmass are TiO2-poor (Usp16-17). The Hole 793B basaltic andesites show, like the Site 458 bronzites from the Mariana forearc, intermediate features between arc tholeiites and boninites: (1) Cr-spinel in olivine, (2) presence of Mg-rich bronzite, Ca-Mg-rich clinopyroxenes, and Ca-plagioclase phenocrysts, and (3) transitional trace element depletion and epsioln-Nd ratios between arc tholeiites and boninites. Thus, the forearc magmatism of the Izu-Bonin and Mariana arcs, linked to rifting and extension, is represented by a depleted tholeiitic suite that displays boninitic affinities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The compositions, mineralogies, and textures of gabbros recovered in polymict breccias in Hole 453 indicate that they are the cumulus assemblages of calc-alkalic crystal fractional on that occurred beneath the West Mariana Ridge. They are among a class of gabbros known only from other calc-alkalic associations (e.g., the Lesser Antilles and the Peninsular Ranges batholith of Southern California) and differ from gabbros of stratiform complexes, ophiolites, and the ocean crust. Particularly abundant in the Hole 453 breccias are olivine-bearing gabbros with extremely calcic Plagioclase (An94-97) but with fairly iron-rich olivines (Fo76-77). Other gabbros contain biotite and amphibole and occur in breccias with fairly high-grade greenschist facies (amphibole-chlorite-stilpnomelane) metabasalts. One unusual gabbro has experienced almost complete subsolidus recrystallization to an assemblage of aluminous magnesio-hornblende, anorthite, and green hercynitic spinel. This reaction, the extremely calcic Plagioclase, the occurrence of biotite and amphibole, and the association with greenschist facies metamorphic rocks suggest that crystallization of the gabbros occurred at elevated P(H2O). Comparisons with other calc-alkalic gabbro suites suggest pressures in excess of 4 kbar (about 12 km depth). The gabbros were exposed by the early stages of opening of the Mariana Trough and imply that considerable uplift may have attended rifting. They were also subjected to hydrothermal alteration after breccia formation, resulting in formation of chlorite, epidote, actinolite, and prehnite. Temperatures of at least 200°C - and probably 350°C - were reached, and most likely could not have been attained without extrusion or intrusion of magmas nearby, even though no such rocks were cored.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Major and trace element (including REE) geochemistry of basalts and chilled basaltic glasses from the MAR axial zone in the vicinity of the Sierra Leone FZ (5-7°10'N) has been studied. Associations of basalts of various compositions with particular ocean-floor geological structural features have been analyzed as well. Three basaltic varieties have been discriminated. Almost ubiquitous are high-Mg basalts (Variety 1) that are derivatives of N-MORB tholeiitic melts and that are produced in the axial zone of spreading. Variety 2 is alkaline basalts widespread on the southwestern flank of the MAR crest zone in the Sierra Leone region, likely generated through deep mantle melting under plume impact. Variety 3 is basalts derivative from T- and P-MORB-like tholeiitic melts and originating through addition of deeper mantle material to depleted upper mantle melts. Magma generation parameters, as calculated from chilled glass compositions, are different for depleted tholeiites (44-55 km, 1320-1370°C) and enriched tholeiites (45-78 km, 1330-1450°C). Mantle plume impact is shown to affect not only tholeiitic basalt compositions but also magma generation conditions in the axial spreading zone, resulting in higher Ti and Na concentrations in melts parental to rift-related basalts occurring near the plume. T- and P-MORBs are also developed near areas where mantle plumes are localized. High-Mg basalts are shown to come in several types with distinctive Ti and Na contents. Nearly every single MAR segment (bounded by sinistral strike slips and the Bogdanov Fracture Zone) is featured by its own basalt type suggesting that it has formed above an asthenospheric diapir with its unique magma generation conditions. These conditions are time variable. Likely causes of temporal and spatial instability of the mantle upwelling beneath this portion of the MAR are singular tectonic processes and plume activity. In sulfide-bearing rift morphostructures (so-called "Ore area'' and the Markov Basin), basalts make up highly evolved suites generated through olivine and plagioclase fractionation, which is suggestive of relatively long-lived magma chambers beneath the sulfide-bearing rift morphostructures. Functioning of these chambers is a combined effect of singular geodynamic regime and plume activity. In these chambers melts undergo deep differentiation leading to progressively increasing concentration of sulfide phase, eventually to be supplied to the hydrothermal plumbing system.