912 resultados para Streptococcal Vaccines
Resumo:
Respiratory syncytial virus (RSV) is the major viral cause of severe pulmonary disease in young infants worldwide. However, the mechanisms by which RSV causes disease in humans remain poorly understood. To help bridge this gap, we developed an ex vivo/in vitro model of RSV infection based on well-differentiated primary pediatric bronchial epithelial cells (WD-PBECs), the primary targets of RSV infection in vivo. Our RSV/WD-PBEC model demonstrated remarkable similarities to hallmarks of RSV infection in infant lungs. These hallmarks included restriction of infection to noncontiguous or small clumps of apical ciliated and occasional nonciliated epithelial cells, apoptosis and sloughing of apical epithelial cells, occasional syncytium formation, goblet cell hyperplasia/metaplasia, and mucus hypersecretion. RSV was shed exclusively from the apical surface at titers consistent with those in airway aspirates from hospitalized infants. Furthermore, secretion of proinflammatory chemokines such as CXCL10, CCL5, IL-6, and CXCL8 reflected those chemokines present in airway aspirates. Interestingly, a recent RSV clinical isolate induced more cytopathogenesis than the prototypic A2 strain. Our findings indicate that this RSV/WD-PBEC model provides an authentic surrogate for RSV infection of airway epithelium in vivo. As such, this model may provide insights into RSV pathogenesis in humans that ultimately lead to successful RSV vaccines or therapeutics.
Resumo:
False-positive PCR results usually occur as a consequence of specimen-to-specimen or amplicon-to-specimen contamination within the laboratory. Evidence of contamination at time of specimen collection linked to influenza vaccine administration in the same location as influenza sampling is described. Clinical, circumstantial and laboratory evidence was gathered for each of five cases of influenza-like illness (ILI) with unusual patterns of PCR reactivity for seasonal H1N1, H3N2, H1N1 (2009) and influenza B viruses. Two 2010 trivalent influenza vaccines and environmental swabs of a hospital influenza vaccination room were also tested for influenza RNA. Sequencing of influenza A matrix (M) gene amplicons from the five cases and vaccines was undertaken. Four 2009 general practitioner (GP) specimens were seasonal H1N1, H3N2 and influenza B PCR positive. One 2010 GP specimen was H1N1 (2009), H3N2 and influenza B positive. PCR of 2010 trivalent vaccines showed high loads of detectable influenza A and B RNA. Sequencing of the five specimens and vaccines showed greatest homology with the M gene sequence of Influenza A/Puerto Rico/8/1934 H1N1 virus (used in generation of influenza vaccine strains). Environmental swabs had detectable influenza A and B RNA. RNA detection studies demonstrated vaccine RNA still detectable for at least 66 days. Administration of influenza vaccines and clinical sampling in the same room resulted in the contamination with vaccine strains of surveillance swabs collected from patients with ILI. Vaccine contamination should therefore be considered, particularly where multiple influenza virus RNA PCR positive signals (e.g. H1N1, H3N2 and influenza B) are detected in the same specimen.
Resumo:
A major goal in vaccine development is elimination of the ‘cold chain’, the transport and storage system for maintenance and distribution of the vaccine product. This is particularly pertinent to liquid formulation of vaccines. We have previously described the rod-insert vaginal ring (RiR) device, comprising an elastomeric body into which are inserted lyophilised, rod-shaped, solid drug dosage forms, and having potential for sustained mucosal delivery of biomacromolecules, such as HIV envelope protein-based vaccine candidates. Given the solid, lyophilised nature of these insert dosage forms, we hypothesised that antigen stability may be significantly increased compared with more conventional solubilised vaginal gel format. In this study, we prepared and tested vaginal ring devices fitted with lyophilised rod inserts containing the model antigen bovine serum albumin (BSA). Both the RiRs and the gels that were freeze-dried to prepare the inserts were evaluated for BSA stability using PAGE, turbidimetry, microbial load, MALDI-TOF and qualitative precipitate solubility measurements. When stored at 4 oC, but not when stored at 40 oC / 75% RH, the RiR formulation offered protection against structural and conformational changes to BSA. The insert also retained matrix integrity and release characteristics. The results demonstrate that lypophilised gels can provide relative protection against degradation at lower temperatures compared to semi-solid gels. The major mechanism of degradation at 40 oC / 75% RH was shown to be protein aggregation. Finally, in a preliminary study, we found that addition of trehalose to the formulation significantly reduces the rate of BSA degradation as compared to the original formulation when stored at 40 oC /75% RH. Establishing the mechanism of degradation, and finding that degradation is decelerated in the presence of trehalose, will help inform further development of RiRs specifically and polymer based freeze-dried systems in general.
Resumo:
The modes of action of fasciolicides are described. Closantel and other salicylanilides interfere with energy metabolism by uncoupling oxidative phosphorylation in the fluke. Other fasciolicides are believed to have a metabolic action-halogenated phenols (via uncoupling) and clorsulon (via inhibition of glycolysis)-but direct evidence is lacking. Benzimidazoles (in particular, riclabendazole) bind to fluke tubulin and disrupt microtubule-based processes. Diamphenethide inhibits protein synthesis in the fluke. Other potential drug actions may contribute to overall drug efficacy. In particular, a number of fasciolicides-salicylanilides, phenols, diamphenethide-induce a rapid paralysis of the fluke, so their action may have a neuromuscular basis, although the actions remain ill-defined. Resistance to salicylanilides and triclabendazole has been detected in the field, although drug resistance does not appear to be a major problem yet. Strategies to minimize the development of resistance include the use of synergistic drug combinations, together with the design of integrated management programmes and the search for alternatives to drugs, in particular, vaccines. (C) 1999 Harcourt Publishers Ltd.
Resumo:
Porcine circovirus type 2 (PCV2) is essential but not sufficient for postweaning multi-systemic wasting syndrome (PMWS) occurrence in pigs. The outcome of PCV2 infection depends on the specific immune responses that are developing during the infection. Diseased pigs are immunosupressed and unable to mount effective immune responses to clear the virus from circulation. In the final stage, PMWS-affected pigs suffer from extensive lymphoid lesions and altered cytokine expression patterns in peripheral blood mononuclear cells (PBMCs) and lymphoid organs. PCV2 infection can also be asymptomatic, demonstrating that not every infection will guarantee the occurrence of severe immunopathological disturbances. Asymptomatic animals have higher virus specific and neutralising antibody titres than PMWS-affected animals. Recent results have pointed out that the mechanisms by which PCV2 can affect the immune responses involve the induction of IL-10, virus accumulation into and modulation of plasmacytoid dendritic cells and the role of viral DNA in regulation of immune cell functions. Fourteen years after the first description of PMWS in Canada, efficient commercial vaccines against PCV2 are available. The vaccine success is based on activated humoral and cellular immune responses against PCV2. This review focuses on the recent research on immunological aspects during PCV2 infections and summarizes what is currently known about the vaccine-induced immunity. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Studies have confirmed the key role of Bacillus anthracis protective antigen (PA) in the US and UK human anthrax vaccines. However, given the tripartite nature of the toxin, other components, including lethal factor (LF), are also likely to contribute to protection. We examined the antibody and T cell responses to PA and LF in human volunteers immunized with the UK anthrax vaccine (AVP). Individual LF domains were assessed for immunogenicity in mice when given alone or with PA. Based on the results obtained, a novel fusion protein comprising D1 of LF and the host cell-binding domain of PA (D4) was assessed for protective efficacy. Murine protection studies demonstrated that both full-length LF and D1 of LF conferred complete protection against a lethal intraperitoneal challenge with B. anthracis STI spores. Subsequent studies with the LFD1-PAD4 fusion protein showed a similar level of protection. LF is immunogenic in humans and is likely to contribute to the protection stimulated by AVP. A single vaccine comprising protective regions from LF and PA would simplify production and confer a broader spectrum of protection than that seen with PA alone.
Resumo:
Burkholderia species are extremely multidrug resistant, environmental bacteria with extraordinary bioremediation and biocontrol properties. At the same time, these bacteria cause serious opportunistic infections in vulnerable patient populations while some species can potentially be used as bioweapons. The complete DNA sequence of more than 10 Burkholderia genomes provides an opportunity to apply functional genomics to a collection of widely adaptable environmental bacteria thriving in diverse niches and establishing both symbiotic and pathogenic associations with many different organisms. However, extreme multidrug resistance hampers genetic manipulations in Burkholderia. We have developed and evaluated a mutagenesis system based on the homing endonuclease I-SceI to construct targeted, non-polar unmarked gene deletions in Burkholderia. Using the cystic fibrosis pathogen Burkholderia cenocepacia K56-2 as a model strain, we demonstrate this system allows for clean deletions of one or more genes within an operon and also the introduction of multiple deletions in the same strain. We anticipate this tool will have widespread environmental and biomedical applications, facilitating functional genomic studies and construction of safe strains for bioremediation and biocontrol, as well as clinical applications such as live vaccines for Burkholderia and other Gram-negative bacterial species.
Resumo:
Campylobacter jejuni has a general N-linked protein glycosylation system that can be functionally transferred to Escherichia coli. In this study, we engineered E. coli cells in a way that two different pathways, protein N-glycosylation and lipopolysaccharide (LPS) biosynthesis, converge at the step in which PglB, the key enzyme of the C. jejuni N-glycosylation system, transfers O polysaccharide from a lipid carrier (undecaprenyl pyrophosphate) to an acceptor protein. PglB was the only protein of the bacterial N-glycosylation machinery both necessary and sufficient for the transfer. The relaxed specificity of the PglB oligosaccharyltransferase toward the glycan structure was exploited to create novel N-glycan structures containing two distinct E. coli or Pseudomonas aeruginosa O antigens. PglB-mediated transfer of polysaccharides might be valuable for in vivo production of O polysaccharides-protein conjugates for use as antibacterial vaccines.
Resumo:
INTRODUCTION: Breaching the skin's stratum corneum barrier raises the possibility of the administration of vaccines, gene vectors, antibodies and even nanoparticles, all of which have at least their initial effect on populations of skin cells. AREAS COVERED: Intradermal vaccine delivery holds enormous potential for improved therapeutic outcomes for patients, particularly those in the developing world. Various vaccine-delivery strategies have been employed, which are discussed in this review. The importance of cutaneous immunobiology on the effect produced by microneedle-mediated intradermal vaccination is also discussed. EXPERT OPINION: Microneedle-mediated vaccines hold enormous potential for patient benefit. However, in order for microneedle vaccine strategies to fulfill their potential, the proportion of an immune response that is due to the local action of delivered vaccines on skin antigen-presenting cells, and what is due to a systemic effect from vaccines reaching the systemic circulation, must be determined. Moreover, industry will need to invest significantly in new equipment and instrumentation in order to mass-produce microneedle vaccines consistently. Finally, microneedles will need to demonstrate consistent dose delivery across patient groups and match this to reliable immune responses before they will replace tried-and-tested needle-and-syringe-based approaches.
Resumo:
Background: Fruit and vegetable (FV) intake, which is often low in older people, is associated with reduced chronic disease risk. Objective: We determined whether increased FV intake improves measures of immune function. Design: We conducted a randomized controlled trial (The Ageing and Dietary Intervention Trial) in 83 healthy volunteers aged 65-85 y with low FV intakes (=2 portions/d); 82 subjects completed the intervention. Participants were assigned to continue their normal diets or to consume =5 FV portions/d for 16 wk. At 12 wk, tetanus toxoid (0.5 mL intramuscular) and Pneumovax II vaccine (0.5 mL intramuscular; both vaccines from Sanofi Pasteur) were administered. FV intake was monitored by using diet histories, and biomarkers of nutritional status were assessed. The primary endpoint was the antibody response to vaccination. Specific antibodies binding to tetanus toxoid (total IgG) and pneumococcal capsular polysaccharide (total IgG and IgG2) were assessed at baseline and 16 wk. Participants were recruited between October 2006 and June 2008. Results: The change in FV consumption differed significantly between groups [mean change in number of portions (95% CI): in the 2-portion/d group, 0.4 portions/d (0.2, 0.7 portions/d); in the 5-portion/d group, 4.6 portions/d (4.1, 5.0 portions/d); P < 0.001)] and also in micronutrient status. Antibody binding to pneumococcal capsular polysaccharide (total IgG) increased more in the 5-portion/d group than in the 2-portion/d group [geometric mean (95% CI) of the week 16:baseline ratio: 3.1 (2.1, 4.4) and 1.7 (1.3, 2.1), respectively; P = 0.005)]. There was no significant difference in the increases in antibody binding to tetanus toxoid. Conclusion: Increased FV intake improves the Pneumovax II vaccination antibody response in older people, which links an achievable dietary goal with improved immune function. This trial was registered at clinicaltrials.gov as NCT00858728. © 2012 American Society for Nutrition.
Resumo:
Bacteroides fragilis is a constituent of the normal resident microbiota of the human intestine and is the gram-negative obligately anaerobic bacterium most frequently isolated from clinical infection. Surface polysaccharides are implicated as potential virulence determinants. We present evidence of within strain immunochemical variation of surface polysaccharides in populations that are noncapsulate by light microscopy as determined by monoclonal antibody labelling. Expression of individual epitopes can be enriched from a population of an individual strain by use of immunomagnetic beads. Also, individual colonies in which either >94% or 94% of the bacteria carry a given epitope, there is no enrichment for other epitopes recognized by different polysaccharide-specific monoclonal antibodies. This intrastrain variation has important implications for the development of potential vaccines or immunodiagnostic tests.
Resumo:
The efficacious delivery of antigens to antigen-presenting cells (APCs), in particular, to dendritic cells (DCs), and their subsequent activation remains a significant challenge in the development of effective vaccines. This study highlights the potential of dissolving microneedle (MN) arrays laden with nanoencapsulated antigen to increase vaccine immunogenicity by targeting antigen specifically to contiguous DC networks within the skin. Following in situ uptake, skin-resident DCs were able to deliver antigen-encapsulated poly-d,l-lactide-co-glycolide (PGLA) nanoparticles to cutaneous draining lymph nodes where they subsequently induced significant expansion of antigen-specific T cells. Moreover, we show that antigen-encapsulated nanoparticle vaccination via microneedles generated robust antigen-specific cellular immune responses in mice. This approach provided complete protection in vivo against both the development of antigen-expressing B16 melanoma tumors and a murine model of para-influenza, through the activation of antigen-specific cytotoxic CD8(+) T cells that resulted in efficient clearance of tumors and virus, respectively. In addition, we show promising findings that nanoencapsulation facilitates antigen retention into skin layers and provides antigen stability in microneedles. Therefore, the use of biodegradable polymeric nanoparticles for selective targeting of antigen to skin DC subsets through dissolvable MNs provides a promising technology for improved vaccination efficacy, compliance, and coverage.
The lipopolysaccharide core of Brucella abortus acts as a shield against innate immunity recognition
Resumo:
Innate immunity recognizes bacterial molecules bearing pathogen-associated molecular patterns to launch inflammatory responses leading to the activation of adaptive immunity. However, the lipopolysaccharide (LPS) of the gram-negative bacterium Brucella lacks a marked pathogen-associated molecular pattern, and it has been postulated that this delays the development of immunity, creating a gap that is critical for the bacterium to reach the intracellular replicative niche. We found that a B. abortus mutant in the wadC gene displayed a disrupted LPS core while keeping both the LPS O-polysaccharide and lipid A. In mice, the wadC mutant induced proinflammatory responses and was attenuated. In addition, it was sensitive to killing by non-immune serum and bactericidal peptides and did not multiply in dendritic cells being targeted to lysosomal compartments. In contrast to wild type B. abortus, the wadC mutant induced dendritic cell maturation and secretion of pro-inflammatory cytokines. All these properties were reproduced by the wadC mutant purified LPS in a TLR4-dependent manner. Moreover, the core-mutated LPS displayed an increased binding to MD-2, the TLR4 co-receptor leading to subsequent increase in intracellular signaling. Here we show that Brucella escapes recognition in early stages of infection by expressing a shield against recognition by innate immunity in its LPS core and identify a novel virulence mechanism in intracellular pathogenic gram-negative bacteria. These results also encourage for an improvement in the generation of novel bacterial vaccines.
Resumo:
Rotavirus nonstructural protein 4 (NSP4) is a protein with pleiotropic properties. It functions in rotavirus morphogenesis, pathogenesis, and is the first described viral enterotoxin. Since many bacterial toxins function as potent mucosal adjuvants, we evaluated whether baculovirus-expressed recombinant simian rotavirus SA11 NSP4 possesses adjuvant activity by co-administering NSP4 with keyhole limpet hemocyanin (KLH), tetanus toxoid (TT) or ovalbumin (OVA) as model antigens in mice. Following intranasal immunization, NSP4 significantly enhanced both systemic and mucosal immune responses to model immunogens, as compared to the control group, in an antigen-specific manner. Both full-length and a cleavage product of SA11 NSP4 had adjuvant activity, localizing this activity to the C-terminus of the protein. NSP4 forms from virulent and avirulent porcine rotavirus OSU strain, and SA11 NSP4 localized within a 2/6-virus-like particle (VLP) also exhibited adjuvant effects. These studies suggest that the rotavirus enterotoxin NSP4 can function as an adjuvant to enhance immune responses for a co-administered antigen.