967 resultados para Steel Fracture


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Commercial-grade En40B steel has been ion nitrided in the temperature range 475–550°C in a 25%N2–75%H2 gas mixture. The nature of the compound layer formed was studied by the X-ray diffraction technique and optical metallography. It was observed that the structure of the compound layer gradually transforms from a predominantly epsilon (Porson) nitride to a predominantly γ′ nitride structure with increasing treatment time. Optical metallography studies on sections orthogonal to the nitrided surface showed that, after about 5 h of treatment, the thickness of the compound layer decreases with further increase in treatment time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The durability of carbon fibre reinforced polymer (CFRP) strengthened steel circular hollow section (CHS) members has now become a real challenge to researchers. In addition, various parameters that may affect the durability of such members have not been revealed yet. This paper presents brief experimental results and the first finite element (FE) approach of CFRP strengthened steel CHS beams conditioned in simulated sea water, along with an accelerated corrosion environment at ambient (24 OC ± 4 OC) and 50 OC temperatures. The beams were loaded to failure under four-point bending. It was found that the strength and stiffness reduced significantly after conditioning in an accelerated corrosion environment. Numerical simulation is implemented using the ABAQUS static general approach. A cohesive element was utilised to model the interface element and an 8-node quadrilateral in-plane general-purpose continuum shell was used to model CFRP elements. A mixed mode cohesive law was deployed for all the three components of stresses in the proposed FE approach, which were one normal component and two shear components. The validity of the FE models was ascertained by comparing the ultimate load and load vs deflection response from experimental results. A range of parametric studies were conducted to investigate the effects of bond length, adhesive types, thickness and diameter of tubes. The results of parametric studies indicated that the adhesive with high tensile modulus performed better and durability design factors varied from section to section.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An attempt has been made experimentally to investigate the acoustic emission (AE) energy release in high-strength concrete (HSC) beams subjected to monotonically increasing load. Acoustic emission energy release during the fracture process of the HSC beams is measured. Stress waves released during the fracture process in materials cause acoustic emissions. AE energy released during the fracture of a notched three-point bend plain concrete beam specimens having 28-day compressive strengths of 50.0 MPa, 69.0 MPa and 78.0 MPa and mortar (cement: sand (1: 4) by weight) specimens are studied. Mortar consists of one part cement and four parts sand by weight. The specimens were tested by a material testing system of 1200 kN capacity employing crack mouth opening displacement control at the rate of 0.0004 mm/s. The fracture energy and the AE energy released during the fracture process of all the tested TPB and mortar specimens are compared and discussed. The observations made in the present experimental study have some applications for monitoring the integrity of structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main objective of this study is to evaluate selected geophysical, structural and topographic methods on regional, local, and tunnel and borehole scales, as indicators of the properties of fracture zones or fractures relevant to groundwater flow. Such information serves, for example, groundwater exploration and prediction of the risk of groundwater inflow in underground construction. This study aims to address how the features detected by these methods link to groundwater flow in qualitative and semi-quantitative terms and how well the methods reveal properties of fracturing affecting groundwater flow in the studied sites. The investigated areas are: (1) the Päijänne Tunnel for water-conveyance whose study serves as a verification of structures identified on regional and local scales; (2) the Oitti fuel spill site, to telescope across scales and compare geometries of structural assessment; and (3) Leppävirta, where fracturing and hydrogeological environment have been studied on the scale of a drilled well. The methods applied in this study include: the interpretation of lineaments from topographic data and their comparison with aeromagnetic data; the analysis of geological structures mapped in the Päijänne Tunnel; borehole video surveying; groundwater inflow measurements; groundwater level observations; and information on the tunnel s deterioration as demonstrated by block falls. The study combined geological and geotechnical information on relevant factors governing groundwater inflow into a tunnel and indicators of fracturing, as well as environmental datasets as overlays for spatial analysis using GIS. Geophysical borehole logging and fluid logging were used in Leppävirta to compare the responses of different methods to fracturing and other geological features on the scale of a drilled well. Results from some of the geophysical measurements of boreholes were affected by the large diameter (gamma radiation) or uneven surface (caliper) of these structures. However, different anomalies indicating more fractured upper part of the bedrock traversed by well HN4 in Leppävirta suggest that several methods can be used for detecting fracturing. Fracture trends appear to align similarly on different scales in the zone of the Päijänne Tunnel. For example, similarities of patterns were found between the regional magnetic trends, correlating with orientations of topographic lineaments interpreted as expressions of fracture zones. The same structural orientations as those of the larger structures on local or regional scales were observed in the tunnel, even though a match could not be made in every case. The size and orientation of the observation space (patch of terrain at the surface, tunnel section, or borehole), the characterization method, with its typical sensitivity, and the characteristics of the location, influence the identification of the fracture pattern. Through due consideration of the influence of the sampling geometry and by utilizing complementary fracture characterization methods in tandem, some of the complexities of the relationship between fracturing and groundwater flow can be addressed. The flow connections demonstrated by the response of the groundwater level in monitoring wells to pressure decrease in the tunnel and the transport of MTBE through fractures in bedrock in Oitti, highlight the importance of protecting the tunnel water from a risk of contamination. In general, the largest values of drawdown occurred in monitoring wells closest to the tunnel and/or close to the topographically interpreted fracture zones. It seems that, to some degree, the rate of inflow shows a positive correlation with the level of reinforcement, as both are connected with the fracturing in the bedrock. The following geological features increased the vulnerability of tunnel sections to pollution, especially when several factors affected the same locations: (1) fractured bedrock, particularly with associated groundwater inflow; (2) thin or permeable overburden above fractured rock; (3) a hydraulically conductive layer underneath the surface soil; and (4) a relatively thin bedrock roof above the tunnel. The observed anisotropy of the geological media should ideally be taken into account in the assessment of vulnerability of tunnel sections and eventually for directing protective measures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Studies investigating the relationship between malnutrition and post-discharge mortality following acute hip fracture yield conflicting results. This study aimed to determine whether malnutrition independently predicted 12-month post-fracture mortality after adjusting for clinically relevant covariates. Methods An ethics approved, prospective, consecutive audit was undertaken for all surgically treated hip fracture inpatients admitted to a dedicated orthogeriatric unit (November 2010–October 2011). The 12-month mortality data were obtained by a dual search of the mortality registry and Queensland Health database. Malnutrition was evaluated using the Subjective Global Assessment. Demographic (age, gender, admission residence) and clinical covariates included fracture type, time to surgery, anaesthesia type, type of surgery, post-surgery time to mobilize and post-operative complications (delirium, pulmonary and deep vein thrombosis, cardiac complications, infections). The Charlson Comorbidity Index was retrospectively applied. All diagnoses were confirmed by the treating orthogeriatrician. Results A total of 322 of 346 patients were available for audit. Increased age (P = 0.004), admission from residential care (P < 0.001), Charlson Comorbidity Index (P = 0.007), malnutrition (P < 0.001), time to mobilize >48 h (P < 0.001), delirium (P = 0.003), pulmonary embolism (P = 0.029) and cardiovascular complication (P = 0.04) were associated with 12-month mortality. Logistic regression analysis demonstrated that malnutrition (odds ratio (OR) 2.4 (95% confidence interval (CI) 1.3–4.7, P = 0.007)), in addition to admission from residential care (OR 2.6 (95% CI 1.3–5.3, P = 0.005)) and pulmonary embolism (OR 11.0 (95% CI 1.5–78.7, P = 0.017)), independently predicted 12-month mortality. Conclusions Findings substantiate malnutrition as an independent predictor of 12-month mortality in a representative sample of hip fracture inpatients. Effective strategies to identify and treat malnutrition in hip fracture should be prioritized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mathematical models, for the stress analysis of symmetric multidirectional double cantilever beam (DCB) specimen using classical beam theory, first and higher-order shear deformation beam theories, have been developed to determine the Mode I strain energy release rate (SERR) for symmetric multidirectional composites. The SERR has been calculated using the compliance approach. In the present study, both variationally and nonvariationally derived matching conditions have been applied at the crack tip of DCB specimen. For the unidirectional and cross-ply composite DCB specimens, beam models under both plane stress and plane strain conditions in the width direction are applicable with good performance where as for the multidirectional composite DCB specimen, only the beam model under plane strain condition in the width direction appears to be applicable with moderate performance. Among the shear deformation beam theories considered, the performance of higher-order shear deformation beam theory, having quadratic variation for transverse displacement over the thickness, is superior in determining the SERR for multidirectional DCB specimen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The kinetic parameters for the hydrogen evolution reaction on a stainless steel substrate have been obtained from a study of the steady-state polarization curves as well as the galvanostatic transients. The high Tafel slope obtained in the steady-state polarization measurements was ascribed to the presence of an oxide film present on the surface of the stainless steel electrode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The equal-channel angular extrusion (ECAE) of Ti-bearing interstitial-free (IF) steel was performed following two different routes, up to four passes, at a temperature of 300 degrees C. The ECAE led to a grain refinement to submicron size. After the second pass, the grain size attained saturation thereafter. The microstructural analysis indicated the presence of coincident-site lattice (CSL) boundaries in significant fraction, in addition to a high volume fraction of high-angle random boundaries and some low-angle boundaries after the deformation. Among the special boundaries, Sigma 3 and Sigma 13 were the most prominent ones and their fraction depended on the processing route followed. A deviation in the misorientation angle distribution from the Mackenzie distribution was noticed. The crystallographic texture after the first pass resembled that of simple shear, with the {112}, {110}, and {123} aligned to the macroscopic shear plane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A microbeam testing geometry is designed to study the variation in fracture toughness across a compositionally graded NiAl coating on a superalloy substrate. A bi-material analytical model of fracture is used to evaluate toughness by deconvoluting load-displacement data generated in a three-point bending test. It is shown that the surface layers of a diffusion bond coat can be much more brittle than the interior despite the fact that elastic modulus and hardness do not display significant variations. Such a gradient in toughness allows stable crack propagation in a test that would normally lead to unstable fracture in a homogeneous, brittle material. As the crack approaches the interface, plasticity due to the presence of Ni3Al leads to gross bending and crack bifurcation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrochemical reduction of hydrogen peroxide is studied on a sand-blasted stainless steel (SSS)electrode in an aqueous solution of NaClO4.The cyclic voltammetric reduction of H2O2 at low concentrations is characterized by a cathodic peak at -0 center dot 40 V versus standard calomel electrode(SCE).Cyclic voltammetry is studied by varying the concentration of H2O2 in the range from 0 center dot 2 mM to 20 mM and the sweep rate in the range from 2 to 100 mV s(-1)Voltammograms at concentrations of H2O2 higher than 2 mM or at high sweep rates consist of an additional current peak, which may be due to the reduction of adsorbed species formed during the reduction of H2O2. Amperometric determination of H2O2 at -0 center dot 50 V vs SCEprovides the detection limit of 5 A mu M H2O2. A plot of current density versus concentration has two segments suggesting a change in the mechanism of H2O2 reduction at concentrations of H2O2 a parts per thousand yen 2 mM. From the rotating disc electrode study, diffusion co-efficient of H2O2 and rate constant for reduction of H2O2 are evaluated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The extent to which low-frequency (minor allele frequency (MAF) between 1-5%) and rare (MAF fractures, and has been previously associated with common genetic variants, as well as rare, population-specific, coding variants. Here we identify novel non-coding genetic variants with large effects on BMD (ntotal = 53,236) and fracture (ntotal = 508,253) in individuals of European ancestry from the general population. Associations for BMD were derived from whole-genome sequencing (n = 2,882 from UK10K (ref. 10); a population-based genome sequencing consortium), whole-exome sequencing (n = 3,549), deep imputation of genotyped samples using a combined UK10K/1000 Genomes reference panel (n = 26,534), and de novo replication genotyping (n = 20,271). We identified a low-frequency non-coding variant near a novel locus, EN1, with an effect size fourfold larger than the mean of previously reported common variants for lumbar spine BMD (rs11692564(T), MAF = 1.6%, replication effect size = +0.20 s.d., Pmeta = 2 x 10(-14)), which was also associated with a decreased risk of fracture (odds ratio = 0.85; P = 2 x 10(-11); ncases = 98,742 and ncontrols = 409,511). Using an En1(cre/flox) mouse model, we observed that conditional loss of En1 results in low bone mass, probably as a consequence of high bone turnover. We also identified a novel low-frequency non-coding variant with large effects on BMD near WNT16 (rs148771817(T), MAF = 1.2%, replication effect size = +0.41 s.d., Pmeta = 1 x 10(-11)). In general, there was an excess of association signals arising from deleterious coding and conserved non-coding variants. These findings provide evidence that low-frequency non-coding variants have large effects on BMD and fracture, thereby providing rationale for whole-genome sequencing and improved imputation reference panels to study the genetic architecture of complex traits and disease in the general population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: This paper reviews the apparatus used for deformation of bone fracture fixation plates during orthopaedic surgeries including surgical irons, pliers and bending press tools. This paper extends the review to various machineries in non-medical industries and adopts their suitability to clinics-related applications and also covers the evolution of orthopaedic bone plates. This review confirms that none of the studied machineries can be implemented for the deformation of bone fracture fixation plates during orthopaedic surgeries. In addition, this paper also presents the novel apparatus that are designed from scratch for this specific purpose. Several conceptual designs have been proposed and evaluated recently. It has been found that Computer Numerical Control (CNC) systems are not the golden solution to this problem and one needs to attempt to design the robotic arm system. A new design of robotic arm that can be used for facilitating orthopaedic surgeries is being completed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, numerical modelling of fracture in concrete using two-dimensional lattice model is presented and also a few issues related to lattice modelling technique applicable to concrete fracture are reviewed. A comparison is made with acoustic emission (AE) events with the number of fractured elements. To implement the heterogeneity of the plain concrete, two methods namely, by generating grain structure of the concrete using Fuller's distribution and the concrete material properties are randomly distributed following Gaussian distribution are used. In the first method, the modelling of the concrete at meso level is carried out following the existing methods available in literature. The shape of the aggregates present in the concrete are assumed as perfect spheres and shape of the same in two-dimensional lattice network is circular. A three-point bend (TPB) specimen is tested in the experiment under crack mouth opening displacement (CMOD) control at a rate of 0.0004 mm/sec and the fracture process in the same TPB specimen is modelled using regular triangular 2D lattice network. Load versus crack mouth opening isplacement (CMOD) plots thus obtained by using both the methods are compared with experimental results. It was observed that the number of fractured elements increases near the peak load and beyond the peak load. That is once the crack starts to propagate. AE hits also increase rapidly beyond the peak load. It is compulsory here to mention that although the lattice modelling of concrete fracture used in this present study is very similar to those already available in literature, the present work brings out certain finer details which are not available explicitly in the earlier works.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Frictional performance of molybdenum disulfide (MoS2) particles sprayed on a substrate is investigated in a ball-on-disc tribometer. The ability of large (similar to 2 mu m) and small (similar to 50 nm) particles to generate low-friction transfer film is investigated with a view to elucidate the requirement for film formation. Particle migration, particle stability in the contact region, oxidation potential, and particle adhesion to the substrate are explored within a span of operating parametersp; normal load, and sliding velocity. It is found that the larger particles are able to migrate to the contact to raise a homogeneous but nonuniform low-friction transfer film that flows plastically to yield large contact areas, which aid in wear protection. Within the present load and speed range, the inability of small particles to stay in the contact region and undergo basal slip militates against the formation of a low-friction transfer film.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of the present study was to investigate the effects of low-intensity ultrasound on bioabsorbable self-reinforced poly-L-lactide (SR-PLLA) screws and on fracture healing after SR-PLLA device fixation in experimental and clinical cancellous bone fracture. In the first experimental study, the assessment of the mechanical strengths of the SR-PLLA screws was performed after 12 weeks of daily 20-minute ultrasound exposure in vitro. In the second experimental study, 32 male Wistar rats with an experimental distal femur osteotomy fixed with an SR-PLLA rod were exposed for daily low-intensity ultrasound treatment for 21 days. The effects on the healing bone were assessed. The clinical studies consist of three prospective, randomized, and placebo-controlled series of dislocated lateral malleolar fractures fixed with one SR-PLLA screw. The total number of the patients in these series was 52. Half of the patients were provided randomly with a sham ultrasound device. The patients underwent ultrasound therapy 20 minutes daily for six weeks. Radiological bone healing was assessed both by radiographs at two, six, nine, and 12 weeks and by multidetector computed tomography (MDCT) scans at two weeks, nine weeks, and 18 months. Bone mineral density was assessed by dual-energy X-ray absorptiometry (DXA). The clinical outcome was assessed by both Olerud-Molander scoring and clinical examination of the ankle. Low-intensity ultrasound had no effects on the mechanical properties and degradation behaviour of the SR-PLLA screws in vitro. There were no obvious signs of low-intensity ultrasound-induced enhancement in the bone healing in SR-PLLA-rod-fixed metaphyseal distal femur osteotomy in rats. The biocompatibility of low-intensity ultrasound treatment and SR-PLLA was found to be good. In the clinical series low-intensity ultrasound was observed to have no obvious effects on the bone mineral density of the fractured lateral malleolus. There were no obvious differences in the radiological bone healing times of the SR-PLLA-screw-fixed lateral malleolar fractures after low-intensity ultrasound treatment. Low-intensity ultrasound did not have any effects on radiological bone morphology, bone mineral density or clinical outcome 18 months after the injury. There were no obvious findings in the present study to support the hypothesis that low-intensity pulsed ultrasound enhances bone healing in SR-PLLA-rod-fixed experimental metaphyseal distal femur osteotomy in rats or in clinical SR-PLLA-screw-fixed lateral malleolar fractures. It is important to limit the conclusions of the present set of studies only to lateral malleolar fractures fixed with an SR-PLLA screw.