947 resultados para Stator faults


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work describes the study and the implementation of the speed control for a three-phase induction motor of 1,1 kW and 4 poles using the neural rotor flux estimation. The vector speed control operates together with the winding currents controller of the stator phasis. The neural flux estimation applied to the vector speed controls has the objective of compensating the parameter dependences of the conventional estimators in relation to the parameter machine s variations due to the temperature increases or due to the rotor magnetic saturation. The implemented control system allows a direct comparison between the respective responses of the speed controls to the machine oriented by the neural rotor flux estimator in relation to the conventional flux estimator. All the system control is executed by a program developed in the ANSI C language. The main DSP recources used by the system are, respectively, the Analog/Digital channels converters, the PWM outputs and the parallel and RS-232 serial interfaces, which are responsible, respectively, by the DSP programming and the data capture through the supervisory system

Relevância:

10.00% 10.00%

Publicador:

Resumo:

At present, the electricity generation through wind energy has an importance growing in the world, with the existence of very large plans for future wind power installation worldwide. Thus, the increasing the electricity generation through wind power requires, more and more, analysis of studies of interaction between wind parks and electric power systems. This paper has as purposes to implement equivalent models for synchronous wind generators to represent a wind park in ATP program and to check behavior of the models through simulations. Simulations with applications of faults were achieved to evaluate the behavior of voltages of system for each equivalent model, through comparisons between the results of models proposed, to verify if the differences obtained allows the adoption of the simplest model

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ensuring the dependability requirements is essential for the industrial applications since faults may cause failures whose consequences result in economic losses, environmental damage or hurting people. Therefore, faced from the relevance of topic, this thesis proposes a methodology for the dependability evaluation of industrial wireless networks (WirelessHART, ISA100.11a, WIA-PA) on early design phase. However, the proposal can be easily adapted to maintenance and expansion stages of network. The proposal uses graph theory and fault tree formalism to create automatically an analytical model from a given wireless industrial network topology, where the dependability can be evaluated. The evaluation metrics supported are the reliability, availability, MTTF (mean time to failure), importance measures of devices, redundancy aspects and common cause failures. It must be emphasized that the proposal is independent of any tool to evaluate quantitatively the target metrics. However, due to validation issues it was used a tool widely accepted on academy for this purpose (SHARPE). In addition, an algorithm to generate the minimal cut sets, originally applied on graph theory, was adapted to fault tree formalism to guarantee the scalability of methodology in wireless industrial network environments (< 100 devices). Finally, the proposed methodology was validate from typical scenarios found in industrial environments, as star, line, cluster and mesh topologies. It was also evaluated scenarios with common cause failures and best practices to guide the design of an industrial wireless network. For guarantee scalability requirements, it was analyzed the performance of methodology in different scenarios where the results shown the applicability of proposal for networks typically found in industrial environments

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The industries are getting more and more rigorous, when security is in question, no matter is to avoid financial damages due to accidents and low productivity, or when it s related to the environment protection. It was thinking about great world accidents around the world involving aircrafts and industrial process (nuclear, petrochemical and so on) that we decided to invest in systems that could detect fault and diagnosis (FDD) them. The FDD systems can avoid eventual fault helping man on the maintenance and exchange of defective equipments. Nowadays, the issues that involve detection, isolation, diagnose and the controlling of tolerance fault are gathering strength in the academic and industrial environment. It is based on this fact, in this work, we discuss the importance of techniques that can assist in the development of systems for Fault Detection and Diagnosis (FDD) and propose a hybrid method for FDD in dynamic systems. We present a brief history to contextualize the techniques used in working environments. The detection of fault in the proposed system is based on state observers in conjunction with other statistical techniques. The principal idea is to use the observer himself, in addition to serving as an analytical redundancy, in allowing the creation of a residue. This residue is used in FDD. A signature database assists in the identification of system faults, which based on the signatures derived from trend analysis of the residue signal and its difference, performs the classification of the faults based purely on a decision tree. This FDD system is tested and validated in two plants: a simulated plant with coupled tanks and didactic plant with industrial instrumentation. All collected results of those tests will be discussed

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work presents a model of bearingless induction machine with divided winding. The main goal is to obtain a machine model to use a simpler control system as used in conventional induction machine and to know its behavior. The same strategies used in conventional machines were used to reach the bearingless induction machine model, which has made possible an easier treatment of the involved parameters. The studied machine is adapted from the conventional induction machine, the stator windings were divided and all terminals had been available. This method does not need an auxiliary stator winding for the radial position control which results in a more compact machine. Another issue about this machine is the variation of inductances array also present in result of the rotor displacement. The changeable air-gap produces variation in magnetic flux and in inductances consequently. The conventional machine model can be used for the bearingless machine when the rotor is centered, but in rotor displacement condition this model is not applicable. The bearingless machine has two sets of motor-bearing, both sets with four poles. It was constructed in horizontal position and this increases difficulty in implementation. The used rotor has peculiar characteristics; it is projected according to the stator to yield the greatest torque and force possible. It is important to observe that the current unbalance generated by the position control does not modify the machine characteristics, this only occurs due the radial rotor displacement. The obtained results validate the work; the data reached by a supervisory system corresponds the foreseen results of simulation which verify the model veracity

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This dissertation dea1s with the active magnetic suspension controI system of an induction bearingIess motor configured with split windings. It analyses a dynamic modeI for the radial magnetic forces actuating on the rotor. From that, it proposes a new approach for the composition of the currents imposed to the machine's stator. It shows the tests accomplished with a prototype, proving the usefulness of the new actuating structure for the radial positioning controI. Finnaly, it points out the importance of adapting this structure to well-known rotational controI techniques, continuing this kind of equipment research, which is carried out at Federal University of Rio Grande do Norte since 2000

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Equipment maintenance is the major cost factor in industrial plants, it is very important the development of fault predict techniques. Three-phase induction motors are key electrical equipments used in industrial applications mainly because presents low cost and large robustness, however, it isn t protected from other fault types such as shorted winding and broken bars. Several acquisition ways, processing and signal analysis are applied to improve its diagnosis. More efficient techniques use current sensors and its signature analysis. In this dissertation, starting of these sensors, it is to make signal analysis through Park s vector that provides a good visualization capability. Faults data acquisition is an arduous task; in this way, it is developed a methodology for data base construction. Park s transformer is applied into stationary reference for machine modeling of the machine s differential equations solution. Faults detection needs a detailed analysis of variables and its influences that becomes the diagnosis more complex. The tasks of pattern recognition allow that systems are automatically generated, based in patterns and data concepts, in the majority cases undetectable for specialists, helping decision tasks. Classifiers algorithms with diverse learning paradigms: k-Neighborhood, Neural Networks, Decision Trees and Naïves Bayes are used to patterns recognition of machines faults. Multi-classifier systems are used to improve classification errors. It inspected the algorithms homogeneous: Bagging and Boosting and heterogeneous: Vote, Stacking and Stacking C. Results present the effectiveness of constructed model to faults modeling, such as the possibility of using multi-classifiers algorithm on faults classification

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work presents a packet manipulation tool developed to realize tests in industrial devices that implements TCP/IP-based communication protocols. The tool was developed in Python programming language, as a Scapy extension. This tool, named IndPM- Industrial Packet Manipulator, can realize vulnerability tests in devices of industrial networks, industrial protocol compliance tests, receive server replies and utilize the Python interpreter to build tests. The Modbus/TCP protocol was implemented as proof-of-concept. The DNP3 over TCP protocol was also implemented but tests could not be realized because of the lack of resources. The IndPM results with Modbus/TCP protocol show some implementation faults in a Programmable Logic Controller communication module frequently utilized in automation companies

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work presents a description of models development at DigSILENT PowerFactoryT M program for the transient stability study in power systems with wind turbine. The main goal is to make available means to use a dynamic simulation program in power systems, widely published, and utilize it as a tool that helps in programs results evaluations used for this intent. The process of simulations and analyses results starts after the models setting description phase. The results obtained by the DigSILENT PowerFactoryT M and ATP, program chosen to the validation also international recognized, are compared during this phase. The main tools and guide lines of PowerFactoryT M program use are presented here, directing these elements to the solution of the approached problem. For the simulation it is used a real system which it will be connected a wind farm. Two different technologies of wind turbines were implemented: doublyfed induction generator with frequency converter, connecting the rotor to the stator and to the grid, and synchronous wind generator with frequency converter, interconnecting the generator to the grid. Besides presenting the basic conceptions of dynamic simulation, it is described the implemented control strategies and models of turbine and converters. The stability of the wind turbine interconnected to grid is analyzed in many operational conditions, resultant of diverse kinds of disturbances

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a real process, all used resources, whether physical or developed in software, are subject to interruptions or operational commitments. However, in situations in which operate critical systems, any kind of problem may bring big consequences. Knowing this, this paper aims to develop a system capable to detect the presence and indicate the types of failures that may occur in a process. For implementing and testing the proposed methodology, a coupled tank system was used as a study model case. The system should be developed to generate a set of signals that notify the process operator and that may be post-processed, enabling changes in control strategy or control parameters. Due to the damage risks involved with sensors, actuators and amplifiers of the real plant, the data set of the faults will be computationally generated and the results collected from numerical simulations of the process model. The system will be composed by structures with Artificial Neural Networks, trained in offline mode using Matlab®

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Induction motors are one of the most important equipment of modern industry. However, in many situations, are subject to inadequate conditions as high temperatures and pressures, load variations and constant vibrations, for example. Such conditions, leaving them more susceptible to failures, either external or internal in nature, unwanted in the industrial process. In this context, predictive maintenance plays an important role, where the detection and diagnosis of faults in a timely manner enables the increase of time of the engine and the possibiity of reducing costs, caused mainly by stopping the production and corrective maintenance the motor itself. In this juncture, this work proposes the design of a system that is able to detect and diagnose faults in induction motors, from the collection of electrical line voltage and current, and also the measurement of engine speed. This information will use as input to a fuzzy inference system based on rules that find and classify a failure from the variation of thess quantities

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work presents a description of models development at DigSILENT PowerFactoryTM program for the transient stability study in power systems with wind turbine. The main goal is to make available means to use a dynamic simulation program in power systems, widely published, and utilize it as a tool that helps in programs results evaluations used for this intent. The process of simulations and analyses results starts after the models setting description phase. The results obtained by the DigSILENT PowerFactoryTM and ATP, program chosen to the validation also international recognized, are compared during this phase. The main tools and guide lines of PowerFactoryTM program use are presented here, directing these elements to the solution of the approached problem. For the simulation it is used a real system which it will be connected a wind farm. Two different technologies of wind turbines were implemented: doubly-fed induction generator with frequency converter, connecting the rotor to the stator and to the grid, and synchronous wind generator with frequency converter, interconnecting the generator to the grid. Besides presenting the basic conceptions of dynamic simulation, it is described the implemented control strategies and models of turbine and converters. The stability of the wind turbine interconnected to grid is analyzed in many operational conditions, resultant of diverse kinds of disturbances

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work consists of the creation of a Specialist System which utilizes production rules to detect inadequacies in the command circuits of an operation system and commands of electric engines known as Direct Start. Jointly, three other modules are developed: one for the simulation of the commands diagram, one for the simulation of faults and another one for the correction of defects in the diagram, with the objective of making it possible to train the professionals aiming a better qualification for the operation and maintenance. The development is carried through in such a way that the structure of the task allows the extending of the system and a succeeding promotion of other bigger and more complex typical systems. The computational environment LabView is employed to enable the system

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrical Motors transform electrical energy into mechanic energy in a relatively easy way. In some specific applications, there is a need for electrical motors to function with noncontaminated fluids, in high speed systems, under inhospitable conditions, or yet, in local of difficult access and considerable depth. In these cases, the motors with mechanical bearings are not adequate as their wear give rise to maintenance. A possible solution for these problems stems from two different alternatives: motors with magnetic bearings, that increase the length of the machine (not convenient), and the bearingless motors that aggregate compactness. Induction motors have been used more and more in research, as they confer more robustness to bearingless motors compared to other types of machines building with others motors. The research that has already been carried out with bearingless induction motors utilized prototypes that had their structures of stator/rotor modified, that differ most of the times from the conventional induction motors. The goal of this work is to study the viability of the use of conventional induction Motors for the beringless motors applications, pointing out the types of Motors of this category that can be more useful. The study uses the Finite Elements Method (FEM). As a means of validation, a conventional induction motor with squirrel-cage rotor was successfully used for the beringless motor application of the divided winding type, confirming the proposed thesis. The controlling system was implemented in a Digital Signal Processor (DSP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The seismic method is of extreme importance in geophysics. Mainly associated with oil exploration, this line of research focuses most of all investment in this area. The acquisition, processing and interpretation of seismic data are the parts that instantiate a seismic study. Seismic processing in particular is focused on the imaging that represents the geological structures in subsurface. Seismic processing has evolved significantly in recent decades due to the demands of the oil industry, and also due to the technological advances of hardware that achieved higher storage and digital information processing capabilities, which enabled the development of more sophisticated processing algorithms such as the ones that use of parallel architectures. One of the most important steps in seismic processing is imaging. Migration of seismic data is one of the techniques used for imaging, with the goal of obtaining a seismic section image that represents the geological structures the most accurately and faithfully as possible. The result of migration is a 2D or 3D image which it is possible to identify faults and salt domes among other structures of interest, such as potential hydrocarbon reservoirs. However, a migration fulfilled with quality and accuracy may be a long time consuming process, due to the mathematical algorithm heuristics and the extensive amount of data inputs and outputs involved in this process, which may take days, weeks and even months of uninterrupted execution on the supercomputers, representing large computational and financial costs, that could derail the implementation of these methods. Aiming at performance improvement, this work conducted the core parallelization of a Reverse Time Migration (RTM) algorithm, using the parallel programming model Open Multi-Processing (OpenMP), due to the large computational effort required by this migration technique. Furthermore, analyzes such as speedup, efficiency were performed, and ultimately, the identification of the algorithmic scalability degree with respect to the technological advancement expected by future processors