896 resultados para State-feedback control
Resumo:
An algorithm for suppressing the chaotic oscillations in non-linear dynamical systems with singular Jacobian matrices is developed using a linear feedback control law based upon the Lyapunov-Krasovskii (LK) method. It appears that the LK method can serve effectively as a generalised method for the suppression of chaotic oscillations for a wide range of systems. Based on this method, the resulting conditions for undisturbed motions to be locally or globally stable are sufficient and conservative. The generalized Lorenz system and disturbed gyrostat equations are exemplified for the validation of the proposed feedback control rule. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
There is an increase in the use of multi-pulse, rectifier-fed motor-drive equipment on board more-electric aircraft. Motor drives with feedback control appear as constant power loads to the rectifiers, which can cause instability of the DC filter capacitor voltage at the output of the rectifier. This problem can be exacerbated by interactions between rectifiers that share a common source impedance. In order that such a system can be analysed, there is a need for average, dynamic models of systems of rectifiers. In this study, an efficient, compact method for deriving the approximate, linear, large-signal, average models of two heterogeneous systems of rectifiers, which are fed from a common source impedance, is presented. The models give insight into significant interaction effects that occur between the converters, and that arise through the shared source impedance. First, a 6-pulse and doubly wound, transformer-fed, 12-pulse rectifier system is considered, followed by a 6-pulse and autotransformer-fed, 12-pulse rectifier system. The system models are validated against detailed simulations and laboratory prototypes, and key characteristics of the two system types are compared.
Resumo:
The future broadband information network will undoubtedly integrate the mobility and flexibility of wireless access systems with the huge bandwidth capacity of photonics solutions to enable a communication system capable of handling the anticipated demand for interactive services. Towards wide coverage and low cost implementations of such broadband wireless photonics communication networks, various aspects of the enabling technologies are continuingly generating intense research interest. Among the core technologies, the optical generation and distribution of radio frequency signals over fibres, and the fibre optic signal processing of optical and radio frequency signals, have been the subjects for study in this thesis. Based on the intrinsic properties of single-mode optical fibres, and in conjunction with the concepts of optical fibre delay line filters and fibre Bragg gratings, a number of novel fibre-based devices, potentially suitable for applications in the future wireless photonics communication systems, have been realised. Special single-mode fibres, namely, the high birefringence (Hi-Bi) fibre and the Er/Yb doped fibre have been employed so as to exploit their merits to achieve practical and cost-effective all-fibre architectures. A number of fibre-based complex signal processors for optical and radio frequencies using novel Hi-Bi fibre delay line filter architectures have been illustrated. In particular, operations such as multichannel flattop bandpass filtering, simultaneous complementary outputs and bidirectional nonreciprocal wavelength interleaving, have been demonstrated. The proposed configurations featured greatly reduced environmental sensitivity typical of coherent fibre delay line filter schemes, reconfigurable transfer functions, negligible chromatic dispersions, and ease of implementation, not easily achievable based on other techniques. A number of unique fibre grating devices for signal filtering and fibre laser applications have been realised. The concept of the superimposed fibre Bragg gratings has been extended to non-uniform grating structures and into Hi-Bi fibres to achieve highly useful grating devices such as overwritten phase-shifted fibre grating structure and widely/narrowly spaced polarization-discriminating filters that are not limited by the intrinsic fibre properties. In terms of the-fibre-based optical millimetre wave transmitters, unique approaches based on fibre laser configurations have been proposed and demonstrated. The ability of the dual-mode distributed feedback (DFB) fibre lasers to generate high spectral purity, narrow linewidth heterodyne signals without complex feedback mechanisms has been illustrated. A novel co-located dual DFB fibre laser configuration, based on the proposed superimposed phase-shifted fibre grating structure, has been further realised with highly desired operation characteristics without the need for costly high frequency synthesizers and complex feedback controls. Lastly, a novel cavity mode condition monitoring and optimisation scheme for short length, linear-cavity fibre lasers has been proposed and achieved. Based on the concept and simplicity of the superimposed fibre laser cavities structure, in conjunction with feedback controls, enhanced output performances from the fibre lasers have been achieved. The importance of such cavity mode assessment and feedback control for optimised fibre laser output performance has been illustrated.
Resumo:
A method has been constructed for the solution of a wide range of chemical plant simulation models including differential equations and optimization. Double orthogonal collocation on finite elements is applied to convert the model into an NLP problem that is solved either by the VF 13AD package based on successive quadratic programming, or by the GRG2 package, based on the generalized reduced gradient method. This approach is termed simultaneous optimization and solution strategy. The objective functional can contain integral terms. The state and control variables can have time delays. Equalities and inequalities containing state and control variables can be included into the model as well as algebraic equations and inequalities. The maximum number of independent variables is 2. Problems containing 3 independent variables can be transformed into problems having 2 independent variables using finite differencing. The maximum number of NLP variables and constraints is 1500. The method is also suitable for solving ordinary and partial differential equations. The state functions are approximated by a linear combination of Lagrange interpolation polynomials. The control function can either be approximated by a linear combination of Lagrange interpolation polynomials or by a piecewise constant function over finite elements. The number of internal collocation points can vary by finite elements. The residual error is evaluated at arbitrarily chosen equidistant grid-points, thus enabling the user to check the accuracy of the solution between collocation points, where the solution is exact. The solution functions can be tabulated. There is an option to use control vector parameterization to solve optimization problems containing initial value ordinary differential equations. When there are many differential equations or the upper integration limit should be selected optimally then this approach should be used. The portability of the package has been addressed converting the package from V AX FORTRAN 77 into IBM PC FORTRAN 77 and into SUN SPARC 2000 FORTRAN 77. Computer runs have shown that the method can reproduce optimization problems published in the literature. The GRG2 and the VF I 3AD packages, integrated into the optimization package, proved to be robust and reliable. The package contains an executive module, a module performing control vector parameterization and 2 nonlinear problem solver modules, GRG2 and VF I 3AD. There is a stand-alone module that converts the differential-algebraic optimization problem into a nonlinear programming problem.
Resumo:
A detailed literature survey confirmed cold roll-forming to be a complex and little understood process. In spite of its growing value, the process remains largely un-automated with few principles used in set-up of the rolling mill. This work concentrates on experimental investigations of operating conditions in order to gain a scientific understanding of the process. The operating conditions are; inter-pass distance, roll load, roll speed, horizontal roll alignment. Fifty tests have been carried out under varied operating conditions, measuring section quality and longitudinal straining to give a picture of bending. A channel section was chosen for its simplicity and compatibility with previous work. Quality measurements were measured in terms of vertical bow, twist and cross-sectional geometric accuracy, and a complete method of classifying quality has been devised. The longitudinal strain profile was recorded, by the use of strain gauges attached to the strip surface at five locations. Parameter control is shown to be important in allowing consistency in section quality. At present rolling mills are constructed with large tolerances on operating conditions. By reduction of the variability in parameters, section consistency is maintained and mill down-time is reduced. Roll load, alignment and differential roll speed are all shown to affect quality, and can be used to control quality. Set-up time is reduced by improving the design of the mill so that parameter values can be measured and set, without the need for judgment by eye. Values of parameters can be guided by models of the process, although elements of experience are still unavoidable. Despite increased parameter control, section quality is variable, if only due to variability in strip material properties. Parameters must therefore be changed during rolling. Ideally this can take place by closed-loop feedback control. Future work lies in overcoming the problems connected with this control.
Resumo:
* This research was supported by a grant from the Greek Ministry of Industry and Technology.
Resumo:
Swallowable capsule endoscopy is used for non-invasive diagnosis of some gastrointestinal (GI) organs. However, control over the position of the capsule is a major unresolved issue. This study presents a design for steering the capsule based on magnetic levitation. The levitation is stabilized with the aid of a computer-aided feedback control system and diamagnetism. Peristaltic and gravitational forces to be overcome were calculated. A levitation setup was built to analyze the feasibility of using Hall Effect sensors to locate the in- vivo capsule. CAD software Maxwell 3D (Ansoft, Pittsburgh, PA) was used to determine the dimensions of the resistive electromagnets required for levitation and the feasibility of building them was examined. Comparison based on design complexity was made between positioning the patient supinely and upright.
Resumo:
Generation systems, using renewable sources, are becoming increasingly popular due to the need for increased use of electricity. Currently, renewables sources have a role to cooperate with conventional generation, due to the system limitation in delivering the required power, the need for reduction of unwanted effects from sources that use fossil fuels (pollution) and the difficulty of building new transmission and/or distribution lines. This cooperation takes place through distributed generation. Therefore, this work proposes a control strategy for the interconnection of a PV (Photovoltaic) system generation distributed with a three-phase power grid through a connection filter the type LCL. The compensation of power quality at point of common coupling (PCC) is performed ensuring that the mains supply or consume only active power and that his currents have low distorcion. Unlike traditional techniques which require schemes for harmonic detection, the technique performs the harmonic compensation without the use of this schemes, controlling the output currents of the system in an indirect way. So that there is effective control of the DC (Direct Current) bus voltage is used the robust controller mode dual DSMPI (Dual-Sliding Mode-Proportional Integral), that behaves as a sliding mode controller SM-PI (Sliding Mode-Proportional Integral) during the transition and like a conventional PI (Proportional Integral) in the steady-state. For control of current is used to repetitive control strategy, which are used double sequence controllers (DSC) tuned to the fundamental component, the fifth and seventh harmonic. The output phase current are aligned with the phase angle of the utility voltage vector obtained from the use of a SRF-PLL (Synchronous Reference Frame Phase-Locked-Loop). In order to obtain the maximum power from the PV array is used a MPPT (Maximum Power Point Tracking) algorithm without the need for adding sensors. Experimental results are presented to demonstrate the effectiveness of the proposed control system.
Resumo:
The delegation of public tasks to arm’s-length bodies remains a central feature of contemporary reform agendas within both developed and developing countries. The role and capacity of political and administrative principals (i.e. ministers and departments of state) to control the vast network of arm’s-length bodies for which they are formally responsible is therefore a critical issue within and beyond academe. In the run-up to the 2010 General Election in the United Kingdom, the ‘quango conundrum’ emerged as an important theme and all three major parties committed themselves to shift the balance of power back towards ministers and sponsor departments. This article presents the results of the first major research project to track and examine the subsequent reform process. It reveals a stark shift in internal control relationships from the pre-election ‘poor parenting’ model to a far tighter internal situation that is now the focus of complaints by arm’s-length bodies of micro-management. This shift in the balance of power and how it was achieved offers new insights into the interplay between different forms of governance and has significant theoretical and comparative relevance. Points for practitioners: For professionals working in the field of arm’s-length governance, the article offers three key insights. First, that a well-resourced core executive is critical to directing reform given the challenges of implementing reform in a context of austerity. Second, that those implementing reform will also need to take into account the diverse consequences of centrally imposed reform likely to result in different departments with different approaches to arm’s-length governance. Third, that reforming arm’s-length governance can affect the quality of relationships, and those working in the field will need to mitigate these less tangible challenges to ensure success.
Resumo:
With applications ranging from aerospace to biomedicine, additive manufacturing (AM) has been revolutionizing the manufacturing industry. The ability of additive techniques, such as selective laser melting (SLM), to create fully functional, geometrically complex, and unique parts out of high strength materials is of great interest. Unfortunately, despite numerous advantages afforded by this technology, its widespread adoption is hindered by a lack of on-line, real time feedback control and quality assurance techniques. In this thesis, inline coherent imaging (ICI), a broadband, spatially coherent imaging technique, is used to observe the SLM process in 15 - 45 $\mu m$ 316L stainless steel. Imaging of both single and multilayer builds is performed at a rate of 200 $kHz$, with a resolution of tens of microns, and a high dynamic range rendering it impervious to blinding from the process beam. This allows imaging before, during, and after laser processing to observe changes in the morphology and stability of the melt. Galvanometer-based scanning of the imaging beam relative to the process beam during the creation of single tracks is used to gain a unique perspective of the SLM process that has been so far unobservable by other monitoring techniques. Single track processing is also used to investigate the possibility of a preliminary feedback control parameter based on the process beam power, through imaging with both coaxial and 100 $\mu m$ offset alignment with respect to the process beam. The 100 $\mu m$ offset improved imaging by increasing the number of bright A-lines (i.e. with signal greater than the 10 $dB$ noise floor) by 300\%. The overlap between adjacent tracks in a single layer is imaged to detect characteristic fault signatures. Full multilayer builds are carried out and the resultant ICI images are used to detect defects in the finished part and improve upon the initial design of the build system. Damage to the recoater blade is assessed using powder layer scans acquired during a 3D build. The ability of ICI to monitor SLM processes at such high rates with high resolution offers extraordinary potential for future advances in on-line feedback control of additive manufacturing.
Resumo:
Biocathodes may be a suitable replacement of platinum in microbial fuel cells (MFCs) if the cost of MFCs is to be reduced. However, the use of enzymes as bio-cathodes is fraught with loss of activity as time progresses. A possible cause of this loss in activity might be pH increase in the cathode as pH gradients in MFCs are well known. This pH increase is however, accompanied by simultaneous increase in salinity; therefore salinity may be a confounding variable. This study investigated various ways of mitigating pH changes in the cathode of MFCs and their effect on laccase activity and decolourisation of a model azo dye Acid orange 7 in the anode chamber. Experiments were run with catholyte pH automatically controlled via feedback control or by using acetate buffers (pH 4.5) of various strength (100 mM and 200 mM), with CMI7000 as the cation exchange membrane. A comparison was also made between use of CMI7000 and Nafion 117 as the transport properties of cations for both membranes (hence their potential effects on pH changes in the cathode) are different.
Resumo:
La scoliose est la pathologie déformante du rachis la plus courante de l’adolescence. Dans 80 % des cas, elle est idiopathique, signifiant qu’aucune cause n’a été associée. Les scolioses idiopathiques répondent à un modèle multifactoriel incluant des facteurs génétiques, environnementaux, neurologiques, hormonaux, biomécaniques et de croissance squelettique. Comme hypothèse neurologique, une anomalie vestibulaire provoquerait une asymétrie d’activation des voies vestibulospinales et des muscles paravertébraux commandés par cette voie, engendrant la déformation scoliotique. Certains modèles animaux permettent de reproduire ce mécanisme. De plus, des anomalies liées au système vestibulaire, comme des troubles de l’équilibre, sont observées chez les patients avec une scoliose. La stimulation vestibulaire galvanique permet d’explorer le contrôle sensorimoteur de l’équilibre puisqu’elle permet d’altérer les afférences vestibulaires. L’objectif de cette thèse est d’explorer le contrôle sensorimoteur en évaluant la réaction posturale provoquée par cette stimulation chez les patients et les participants contrôle. Dans la première étude, les patients sont plus déstabilisés que les contrôles et il n’y a pas de lien entre l’ampleur de l’instabilité et la sévérité de la scoliose. Dans la deuxième étude, à l’aide d’un modèle neuromécanique, un poids plus grand aux signaux vestibulaires a été attribué aux patients. Dans la troisième étude, un problème sensorimoteur est également observé chez les jeunes adultes ayant une scoliose, excluant ainsi que le problème soit dû à la maturation du système nerveux. Dans une étude subséquente, des patients opérés pour réduire leur déformation du rachis, montrent également une réaction posturale de plus grande amplitude à la stimulation comparativement à des participants contrôle. Ces résultats suggèrent que l’anomalie sensorimotrice ne serait pas secondaire à la déformation. Finalement, un algorithme a été développé pour identifier les patients ayant un problème sensorimoteur. Les patients montrant un contrôle sensorimoteur anormal ont également une réponse vestibulomotrice plus grande et attribuent plus de poids aux informations vestibulaires. Globalement, les résultats de cette thèse montrent qu’un déficit sensorimoteur expliquerait l’apparition de la scoliose mais pas sa progression. Le dysfonctionnement sensorimoteur n’est pas présent chez tous les patients. L’algorithme permettant une classification de la performance sensorimotrice pourrait être utile pour de futures études cliniques.
Resumo:
Manipulation of single cells and particles is important to biology and nanotechnology. Our electrokinetic (EK) tweezers manipulate objects in simple microfluidic devices using gentle fluid and electric forces under vision-based feedback control. In this dissertation, I detail a user-friendly implementation of EK tweezers that allows users to select, position, and assemble cells and nanoparticles. This EK system was used to measure attachment forces between living breast cancer cells, trap single quantum dots with 45 nm accuracy, build nanophotonic circuits, and scan optical properties of nanowires. With a novel multi-layer microfluidic device, EK was also used to guide single microspheres along complex 3D trajectories. The schemes, software, and methods developed here can be used in many settings to precisely manipulate most visible objects, assemble objects into useful structures, and improve the function of lab-on-a-chip microfluidic systems.
Resumo:
The "Sonar Hopf" cochlea is a recently much advertised engineering design of an auditory sensor. We analyze this approach based on a recent description by its inventors Hamilton, Tapson, Rapson, Jin, and van Schaik, in which they exhibit the "Sonar Hopf" model, its analysis and the corresponding hardware in detail. We identify problems in the theoretical formulation of the model and critically examine the claimed coherence between the described model, the measurements from the implemented hardware, and biological data.
Resumo:
Este trabalho tem por objetivo apresentar uma aplicação de métodos geoestatísticos na elaboração de mapas de risco à saúde pública, por meio da identificação de áreas com maior concentração de metais pesados. Foi escolhido o elemento chumbo (Pb), resultante do transporte aéreo ou do carregamento das partículas causado pela lixiviação do solo, em uma região com grande concentração urbana e industrial na Baixada Santista, São Paulo, Brasil. Elaboraram-se mapas das distribuições espaciais desse elemento por intermédio da krigagem ordinária; posteriormente, utilizando-se a krigagem indicativa, identificaram-se as áreas com valores de contaminação do solo superiores aos níveis máximos aceitáveis pelo órgão de controle ambiental do Estado de São Paulo, originando um mapeamento com áreas com maior probabilidade de risco à saúde pública. Os mapas resultantes mostraram-se ferramentas promissoras para auxiliar a tomada de decisão quanto a questões de políticas públicas relacionadas à saúde e ao planejamento ambiental.