839 resultados para Spectrum sensing
Resumo:
BACKGROUND: Digoxin intoxication results in predominantly digestive, cardiac and neurological symptoms. This case is outstanding in that the intoxication occurred in a nonagenarian and induced severe, extensively documented visual symptoms as well as dysphagia and proprioceptive illusions. Moreover, it went undiagnosed for a whole month despite close medical follow-up, illustrating the difficulty in recognizing drug-induced effects in a polymorbid patient. CASE PRESENTATION: Digoxin 0.25 mg qd for atrial fibrillation was prescribed to a 91-year-old woman with an estimated creatinine clearance of 18 ml/min. Over the following 2-3 weeks she developed nausea, vomiting and dysphagia, snowy and blurry vision, photopsia, dyschromatopsia, aggravated pre-existing formed visual hallucinations and proprioceptive illusions. She saw her family doctor twice and visited the eye clinic once until, 1 month after starting digoxin, she was admitted to the emergency room. Intoxication was confirmed by a serum digoxin level of 5.7 ng/ml (reference range 0.8-2 ng/ml). After stopping digoxin, general symptoms resolved in a few days, but visual complaints persisted. Examination by the ophthalmologist revealed decreased visual acuity in both eyes, 4/10 in the right eye (OD) and 5/10 in the left eye (OS), decreased color vision as demonstrated by a score of 1/13 in both eyes (OU) on Ishihara pseudoisochromatic plates, OS cataract, and dry age-related macular degeneration (ARMD). Computerized static perimetry showed non-specific diffuse alterations suggestive of either bilateral retinopathy or optic neuropathy. Full-field electroretinography (ERG) disclosed moderate diffuse rod and cone dysfunction and multifocal ERG revealed central loss of function OU. Visual symptoms progressively improved over the next 2 months, but multifocal ERG did not. The patient was finally discharged home after a 5 week hospital stay. CONCLUSION: This case is a reminder of a complication of digoxin treatment to be considered by any treating physician. If digoxin is prescribed in a vulnerable patient, close monitoring is mandatory. In general, when facing a new health problem in a polymorbid patient, it is crucial to elicit a complete history, with all recent drug changes and detailed complaints, and to include a drug adverse reaction in the differential diagnosis.
Resumo:
The chicken acid-sensing ion channel ASIC1 has been crystallized as a homotrimer. We address here the oligomeric state of the functional ASIC1 in situ at the cell surface. The oligomeric states of functional ASIC1a and mutants with additional cysteines introduced in the extracellular pore vestibule were resolved on SDS-PAGE. The functional ASIC1 complexes were stabilized at the cell surface of Xenopus laevis oocytes or CHO cells either using the sulfhydryl crosslinker BMOE, or sodium tetrathionate (NaTT). Under these different crosslinking conditions ASIC1a migrates as four distinct oligomeric states that correspond by mass to multiples of a single ASIC1a subunit. The relative importance of each of the four ASIC1a oligomers was critically dependent on the availability of cysteines in the transmembrane domain for crosslinking, consistent with the presence of ASIC1a homo-oligomers. The expression of ASIC1a monomers, trimeric or tetrameric concatemeric cDNA constructs resulted in functional channels. The resulting ASIC1a complexes are resolved as a predominant tetramer over the other oligomeric forms, after stabilization with BMOE or NaTT and SDS-PAGE/western blot analysis. Our data identify a major ASIC1a homotetramer at the surface membrane of the cell expressing functional ASIC1a channel.
Resumo:
The microquasar 1E 1740.7-2942 is a source located in the direction of the Galactic Center. It has been detected at X-rays, soft gamma-rays, and in the radio band, showing an extended radio component in the form of a double-sided jet. Although no optical counterpart has been found so far for 1E 1740.7-2942, its X-ray activity strongly points to a galactic nature. Aims.We aim to improve our understanding of the hard X-ray and gamma-ray production in the system, exploring whether the jet can emit significantly at high energies under the light of the present knowledge. Methods.We have modeled the source emission, from radio to gamma-rays, with a cold-matter dominated jet model. INTEGRAL data combined with radio and RXTE data, as well as EGRET and HESS upper-limits, are used to compare the computed and the observed spectra. Results.From our modeling, we find out that jet emission cannot explain the high fluxes observed at hard X-rays without violating at the same time the constraints from the radio data, favoring the corona origin of the hard X-rays. Also, 1E 1740.7-2942 might be detected by GLAST or AGILE at GeV energies, and by HESS and HESS-II beyond 100 GeV, with the spectral shape likely affected by photon-photon absorption in the disk and corona photon fields.
Resumo:
Inherited peripheral neuropathies are a genetically heterogeneous group of disorders characterized by distal muscle weakness and sensory loss. Mutations in genes encoding aminoacyl-tRNA synthetases have been implicated in peripheral neuropathies, suggesting that these tRNA charging enzymes are uniquely important for the peripheral nerve. Recently, a mutation in histidyl-tRNA synthetase (HARS) was identified in a single patient with a late-onset, sensory-predominant peripheral neuropathy; however, the genetic evidence was lacking, making the significance of the finding unclear. Here, we present clinical, genetic, and functional data that implicate HARS mutations in inherited peripheral neuropathies. The associated phenotypic spectrum is broad and encompasses axonal and demyelinating motor and sensory neuropathies, including four young patients presenting with pure motor axonal neuropathy. Genome-wide linkage studies in combination with whole-exome and conventional sequencing revealed four distinct and previously unreported heterozygous HARS mutations segregating with autosomal dominant peripheral neuropathy in four unrelated families (p.Thr132Ile, p.Pro134His, p.Asp175Glu and p.Asp364Tyr). All mutations cause a loss of function in yeast complementation assays, and p.Asp364Tyr is dominantly neurotoxic in a Caenorhabditis elegans model. This study demonstrates the role of HARS mutations in peripheral neuropathy and expands the genetic and clinical spectrum of aminoacyl-tRNA synthetase-related human disease.
Resumo:
Interleukin 17-producing helper T cells (TH17 cells) have a major role in protection against infections and in mediating autoimmune diseases, yet the mechanisms involved are incompletely understood. We found that interleukin 26 (IL-26), a human TH17 cell-derived cytokine, is a cationic amphipathic protein that kills extracellular bacteria via membrane-pore formation. Furthermore, TH17 cell-derived IL-26 formed complexes with bacterial DNA and self-DNA released by dying bacteria and host cells. The resulting IL-26-DNA complexes triggered the production of type I interferon by plasmacytoid dendritic cells via activation of Toll-like receptor 9, but independently of the IL-26 receptor. These findings provide insights into the potent antimicrobial and proinflammatory function of TH17 cells by showing that IL-26 is a natural human antimicrobial that promotes immune sensing of bacterial and host cell death.
Resumo:
Glucose homeostasis as well as homeostatic and hedonic control of feeding is regulated by hormonal, neuronal, and nutrient-related cues. Glucose, besides its role as a source of metabolic energy, is an important signal controlling hormone secretion and neuronal activity, hence contributing to whole-body metabolic integration in coordination with feeding control. Brain glucose sensing plays a key, but insufficiently explored, role in these metabolic and behavioral controls, which when deregulated may contribute to the development of obesity and diabetes. The recent introduction of innovative transgenic, pharmacogenetic, and optogenetic techniques allows unprecedented analysis of the complexity of central glucose sensing at the molecular, cellular, and neuronal circuit levels, which will lead to a new understanding of the pathogenesis of metabolic diseases.
Resumo:
Interactions between sodium and calcium regulating systems are poorly characterized but clinically important. Parathyroid hormone (PTH) levels are increased shortly after furosemide treatment by an unknown mechanism, and this effect is blunted by the previous administration of a calcimimetic in animal studies. Here, we explored further the possible underlying mechanisms of this observation in a randomized crossover placebo-controlled study performed in 18 human males. Volunteers took either cinacalcet (60 mg) or placebo and received a 20 mg furosemide injection 3 h later. Plasma samples were collected at 15-min intervals and analyzed for intact PTH, calcium, sodium, potassium, magnesium, phosphate, plasma renin activity (PRA), and aldosterone up to 6 h after furosemide injection. Urinary electrolyte excretion was also monitored. Subjects under placebo presented a sharp increase in PTH levels after furosemide injection. In the presence of cinacalcet, PTH levels were suppressed and marginal increase of PTH was observed. No significant changes in electrolytes and urinary excretion were identified that could explain the furosemide-induced increase in PTH levels. PRA and aldosterone were stimulated by furosemide injection but were not affected by previous cinacalcet ingestion. Expression of NKCC1, but not NKCC2, was found in parathyroid tissue. In conclusion, our results indicate that furosemide acutely stimulates PTH secretion in the absence of any detectable electrolyte changes in healthy adults. A possible direct effect of furosemide on parathyroid gland needs further studies.
Resumo:
In this article, we show how the use of state-of-the-art methods in computer science based on machine perception and learning allows the unobtrusive capture and automated analysis of interpersonal behavior in real time (social sensing). Given the high ecological validity of the behavioral sensing, the ease of behavioral-cue extraction for large groups over long observation periods in the field, the possibility of investigating completely new research questions, and the ability to provide people with immediate feedback on behavior, social sensing will fundamentally impact psychology.
Resumo:
Nonverbal behavior coding is typically conducted by "hand". To remedy this time and resource intensive undertaking, we illustrate how nonverbal social sensing, defined as the automated recording and extracting of nonverbal behavior via ubiquitous social sensing platforms, can be achieved. More precisely, we show how and what kind of nonverbal cues can be extracted and to what extent automated extracted nonverbal cues can be validly obtained with an illustrative research example. In a job interview, the applicant's vocal and visual nonverbal immediacy behavior was automatically sensed and extracted. Results show that the applicant's nonverbal behavior can be validly extracted. Moreover, both visual and vocal applicant nonverbal behavior predict recruiter hiring decision, which is in line with previous findings on manually coded applicant nonverbal behavior. Finally, applicant average turn duration, tempo variation, and gazing best predict recruiter hiring decision. Results and implications of such a nonverbal social sensing for future research are discussed.
Resumo:
BACKGROUND: Variations in physical activity (PA) across nations may be driven by socioeconomic position. As national incomes increase, car ownership becomes within reach of more individuals. This report characterizes associations between car ownership and PA in African-origin populations across 5 sites at different levels of economic development and with different transportation infrastructures: US, Seychelles, Jamaica, South Africa, and Ghana. METHODS: Twenty-five hundred adults, ages 25-45, were enrolled in the study. A total of 2,101 subjects had valid accelerometer-based PA measures (reported as average daily duration of moderate to vigorous PA, MVPA) and complete socioeconomic information. Our primary exposure of interest was whether the household owned a car. We adjusted for socioeconomic position using household income and ownership of common goods. RESULTS: Overall, PA levels did not vary largely between sites, with highest levels in South Africa, lowest in the US. Across all sites, greater PA was consistently associated with male gender, fewer years of education, manual occupations, lower income, and owning fewer material goods. We found heterogeneity across sites in car ownership: after adjustment for confounders, car owners in the US had 24.3 fewer minutes of MVPA compared to non-car owners in the US (20.7 vs. 45.1 minutes/day of MVPA); in the non-US sites, car-owners had an average of 9.7 fewer minutes of MVPA than non-car owners (24.9 vs. 34.6 minutes/day of MVPA). CONCLUSIONS: PA levels are similar across all study sites except Jamaica, despite very different levels of socioeconomic development. Not owning a car in the US is associated with especially high levels of MVPA. As car ownership becomes prevalent in the developing world, strategies to promote alternative forms of active transit may become important.
Resumo:
The caspase-3/p120 RasGAP module acts as a stress sensor that promotes pro-survival or pro-death signaling depending on the intensity and the duration of the stressful stimuli. Partial cleavage of p120 RasGAP generates a fragment, called fragment N, which protects stressed cells by activating Akt signaling. Akt family members regulate many cellular processes including proliferation, inhibition of apoptosis and metabolism. These cellular processes are regulated by three distinct Akt isoforms: Akt1, Akt2 and Akt3. However, which of these isoforms are required for fragment N mediated protection have not been defined. In this study, we investigated the individual contribution of each isoform in fragment N-mediated cell protection against Fas ligand induced cell death. To this end, DLD1 and HCT116 isogenic cell lines lacking specific Akt isoforms were used. It was found that fragment N could activate Akt1 and Akt2 but that only the former could mediate the protective activity of the RasGAP-derived fragment. Even overexpression of Akt2 or Akt3 could not rescue the inability of fragment N to protect cells lacking Akt1. These results demonstrate a strict Akt isoform requirement for the anti-apoptotic activity of fragment N.
Resumo:
Coherent anti-Stokes Raman scattering is the powerful method of laser spectroscopy in which significant successes are achieved. However, the non-linear nature of CARS complicates the analysis of the received spectra. The objective of this Thesis is to develop a new phase retrieval algorithm for CARS. It utilizes the maximum entropy method and the new wavelet approach for spectroscopic background correction of a phase function. The method was developed to be easily automated and used on a large number of spectra of different substances.. The algorithm was successfully tested on experimental data.
Resumo:
The CA1 region of the hippocampus is particularly vulnerable to ischemic damage. While NMDA receptors play a major role in excitotoxicity, it is thought to be exacerbated in this region by two forms of post-ischemic AMPA receptor (AMPAR) plasticity - namely, anoxic long-term potentiation (a-LTP), and a delayed increase in the prevalence of Ca2+ -permeable GluA2-lacking AMPARs (CP-AMPARs). The acid-sensing ion channel 1a (ASIC1a) which is expressed in CA1 pyramidal neurons, is also known to contribute to post-ischemic neuronal death and to physiologically induced LTP. This raises the question - does ASIC1a activation drive the post-ischemic forms of AMPAR plasticity in CA1 pyramidal neurons? We have tested this by examining organotypic hippocampal slice cultures (OHSCs) exposed to oxygen glucose deprivation (OGD), and dissociated cultures of hippocampal pyramidal neurons (HPN) exposed to low pH (acidosis). We find that both a-LTP and the delayed increase in the prevalence of CP-AMPARs are dependent on ASIC1a activation during ischemia. Indeed, acidosis alone is sufficient to induce the increase in CP-AMPARs. We also find that inhibition of ASIC1a channels circumvents any potential neuroprotective benefit arising from block of CP-AMPARs. By demonstrating that ASIC1a activation contributes to post-ischemic AMPAR plasticity, our results identify a functional interaction between acidotoxicity and excitotoxicity in hippocampal CA1 cells, and provide insight into the role of ASIC1a and CP-AMPARs as potential drug targets for neuroprotection. We thus propose that ASIC1a activation can drive certain forms of CP-AMPAR plasticity, and that inhibiting ASIC1a affords neuroprotection.
Resumo:
Objective: The aim of the current study was to investigate the long-term cognitive effects of electroconvulsive therapy (ECT) in a sample of adolescent patients in whom schizophrenia spectrum disorders were diagnosed. Methods: The sample was composed of nine adolescent subjects in whom schizophrenia or schizoaffective disorder was diagnosed according to DSM-IV-TR criteria on whom ECT was conducted (ECT group) and nine adolescent subjects matched by age, socioeconomic status, and diagnostic and Positive and Negative Syndrome Scale (PANSS) total score at baseline on whom ECT was not conducted (NECT group). Clinical and neuropsychological assessments were carried out at baseline before ECT treatment and at 2-year follow-up. Results: Significant differences were found between groups in the number of unsuccessful medication trials. No statistically significant differences were found between the ECT group and theNECT group in either severity as assessed by the PANSS, or in any cognitive variables at baseline.At follow-up, both groups showed significant improvement in clinical variables (subscales of positive, general, and total scores of PANSS and Clinical Global Impressions-Improvement). In the cognitive assessment at follow-up, significant improvement was found in both groups in the semantic category of verbal fluency task and digits forward. However, no significant differences were found between groups in any clinical or cognitive variable at follow-up. Repeated measures analysis found no significant interaction of time · group in any clinical or neuropsychological measures. Conclusions: The current study showed no significant differences in change over time in clinical or neuropsychological variables between the ECT group and the NECT group at 2-year follow-up. Thus, ECT did not show any negative influence on long-term neuropsychological variables in our sample.