967 resultados para Specific Leaf Weight


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genes for σ-like factors of bacterial-type RNA polymerase have not been characterized from any multicellular eukaryotes, although they probably play a crucial role in the expression of plastid photosynthesis genes. We have cloned three distinct cDNAs, designated SIG1, SIG2, and SIG3, for polypeptides possessing amino acid sequences for domains conserved in σ70 factors of bacterial RNA polymerases from the higher plant Arabidopsis thaliana. Each gene is present as one copy per haploid genome without any additional sequences hybridized in the genome. Transient expression assays using green fluorescent protein demonstrated that N-terminal regions of the SIG2 and SIG3 ORFs could function as transit peptides for import into chloroplasts. Transcripts for all three SIG genes were detected in leaves but not in roots, and were induced in leaves of dark-adapted plants in rapid response to light illumination. Together with results of our previous analysis of tissue-specific regulation of transcription of plastid photosynthesis genes, these results indicate that expressed levels of the genes may influence transcription by regulating RNA polymerase activity in a green tissue-specific manner.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quantitative, chemically specific images of biological systems would be invaluable in unraveling the bioinorganic chemistry of biological tissues. Here we report the spatial distribution and chemical forms of selenium in Astragalus bisulcatus (two-grooved poison or milk vetch), a plant capable of accumulating up to 0.65% of its shoot dry biomass as Se in its natural habitat. By selectively tuning incident x-ray energies close to the Se K-absorption edge, we have collected quantitative, 100-μm-resolution images of the spatial distribution, concentration, and chemical form of Se in intact root and shoot tissues. To our knowledge, this is the first report of quantitative concentration-imaging of specific chemical forms. Plants exposed to 5 μM selenate for 28 days contained predominantly selenate in the mature leaf tissue at a concentration of 0.3–0.6 mM, whereas the young leaves and the roots contained organoselenium almost exclusively, indicating that the ability to biotransform selenate is either inducible or developmentally specific. While the concentration of organoselenium in the majority of the root tissue was much lower than that of the youngest leaves (0.2–0.3 compared with 3–4 mM), isolated areas on the extremities of the roots contained concentrations of organoselenium an order of magnitude greater than the rest of the root. These imaging results were corroborated by spatially resolved x-ray absorption near-edge spectra collected from selected 100 × 100 μm2 regions of the same tissues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In animal cell lysates the multiprotein heat-shock protein 90 (hsp90)-based chaperone complexes consist of hsp70, hsp40, and p60. These complexes act to convert steroid hormone receptors to their steroid-binding state by assembling them into heterocomplexes with hsp90, p23, and one of several immunophilins. Wheat germ lysate also contains a hsp90-based chaperone system that can assemble the glucocorticoid receptor into a functional heterocomplex with hsp90. However, only two components of the heterocomplex-assembly system, hsp90 and hsp70, have thus far been identified. Recently, purified mammalian p23 preadsorbed with JJ3 antibody-protein A-Sepharose pellets was used to isolate a mammalian p23-wheat hsp90 heterocomplex from wheat germ lysate (J.K. Owens-Grillo, L.F. Stancato, K. Hoffmann, W.B. Pratt, and P. Krishna [1996] Biochemistry 35: 15249–15255). This heterocomplex was found to contain an immunophilin(s) of the FK506-binding class, as judged by binding of the radiolabeled immunosuppressant drug [3H]FK506 to the immune pellets in a specific manner. In the present study we identified the immunophilin components of this heterocomplex as FKBP73 and FKBP77, the two recently described high-molecular-weight FKBPs of wheat. In addition, we present evidence that the two FKBPs bind hsp90 via tetratricopeptide repeat domains. Our results demonstrate that binding of immunophilins to hsp90 via tetratricopeptide repeat domains is a conserved protein interaction in plants. Conservation of this protein-to-protein interaction in both plant and animal cells suggests that it is important for the biological action of the high-molecular-weight immunophilins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To understand how sucrose (Suc) is transported from source leaves to developing tap roots of carrot (Daucus carota L.), we cloned two cDNAs (DcSUT1 and DcSUT2) for proteins with homologies to plant Suc/H+ symporters. The deduced polypeptide sequences are 52% identical and have 12 predicted membrane-spanning domains each. Transport activities were confirmed by expression of the clones in yeast cells. Both transporters had optimal activity below pH 5.0 and Michaelis constant values of 0.5 mm. Suc uptake was inhibited by protonophores, suggesting that Suc transport is linked to the proton electrochemical potential across the plasma membrane. DcSUT1 and DcSUT2 had markedly different expression patterns. Transcripts of DcSUT1 were found only in the green parts of plants, with highest levels in the lamina of source leaves, indicating that DcSUT1 is required for the loading of Suc into the phloem. In leaf lamina expression was diurnally regulated, suggesting that Suc export from the leaves is higher during the day than during the night. The mRNA of DcSUT2 was found mainly in sink organs, and no diurnal expression pattern was detected in the storage root. Here, expression was not restricted to the phloem but was much higher in storage parenchyma tissues of phloem and xylem. The close relationship of DcSUT2 with a Suc/H+ symporter from fava bean, which facilitates Suc uptake into the cotyledons of developing seeds, indicates that this carrot Suc transporter may be involved in loading Suc into storage parenchyma cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plasmodesmata mediate direct cell-to-cell communication in plants. One of their significant features is that primary plasmodesmata formed at the time of cytokinesis often undergo structural modifications, by the de novo addition of cytoplasmic strands across cell walls, to become complex secondary plasmodesmata during plant development. Whether such modifications allow plasmodesmata to gain special transport functions has been an outstanding issue in plant biology. Here we present data showing that the cucumber mosaic virus 3a movement protein (MP):green fluorescent protein (GFP) fusion was not targeted to primary plasmodesmata in the epidermis of young or mature leaves in transgenic tobacco (Nicotiana tabacum) plants constitutively expressing the 3a:GFP fusion gene. Furthermore, the cucumber mosaic virus 3a MP:GFP fusion protein produced in planta by biolistic bombardment of the 3a:GFP fusion gene did not traffic between cells interconnected by primary plasmodesmata in the epidermis of a young leaf. In contrast, the 3a MP:GFP was targeted to complex secondary plasmodesmata and trafficked from cell to cell when a leaf reached a certain developmental stage. These data provide the first experimental evidence, to our knowledge, that primary and complex secondary plasmodesmata have different protein-trafficking functions and suggest that complex secondary plasmodesmata may be formed to traffic specific macromolecules that are important for certain stages of leaf development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interveinal strips (10 × 1.5 mm) excised from growing tobacco (Nicotiana tabacum L. cv Xanthi) leaves have an auxin-specific, epinastic growth response that is developmentally regulated and is not the result of ethylene induction (C.P. Keller, E. Van Volkenburgh [1997] Plant Physiol 113: 603–610). We report here that auxin (10 μm naphthalene acetic acid) treatment of strips does not result in plasma membrane hyperpolarization or detectable proton efflux. This result is in contrast to the expected responses elicited by 1 μm fusicoccin (FC) treatment, which in other systems mimics auxin growth promotion through stimulation of the plasma membrane H+-ATPase and resultant acid wall loosening; FC produced both hyperpolarization and proton efflux in leaf strips. FC-induced growth was much more inhibited by a strong neutral buffer than was auxin-induced growth. Measurements of the osmotic concentration of strips suggested that osmotic adjustment plays no role in the auxin-induced growth response. Although cell wall loosening of some form appears to be involved, taken together, our results suggest that auxin-induced growth stimulation of tobacco leaf strips results primarily from a mechanism not involving acid growth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We isolated and characterized a novel light-regulated cDNA from the short-day plant Pharbitis nil that encodes a protein with a leucine (Leu) zipper motif, designated PNZIP (Pharbitis nil Leu zipper). The PNZIP cDNA is not similar to any other gene with a known function in the database, but it shares high sequence homology with an Arabidopsis expressed sequence tag and to two other sequences of unknown function from the cyanobacterium Synechocystis spp. and the red alga Porphyra purpurea, which together define a new family of evolutionarily conserved Leu zipper proteins. PNZIP is a single-copy gene that is expressed specifically in leaf photosynthetically active mesophyll cells but not in other nonphotosynthetic tissues such as the epidermis, trichomes, and vascular tissues. When plants were exposed to continuous darkness, PNZIP exhibited a rhythmic pattern of mRNA accumulation with a circadian periodicity of approximately 24 h, suggesting that its expression is under the control of an endogenous clock. However, the expression of PNZIP was unusual in that darkness rather than light promoted its mRNA accumulation. Accumulation of PNZIP mRNA during the dark is also regulated by phytochrome, since a brief exposure to red light in the middle of the night reduced its mRNA levels. Moreover, a far-red-light treatment at the end of day also reduced PNZIP mRNA accumulation during the dark, and that effect could be inhibited by a subsequent exposure to red light, showing the photoreversible response attributable to control through the phytochrome system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel photoactivatable analog of ovine corticotropin-releasing factor (ovine photoCRF) has been synthesized and characterized. A diazirine group, the 4-(1-azi-2,2,2-trifluoroethyl)benzoyl residue, was covalently bound to the amino terminus of ovine CRF (oCRF), which was N-terminally extended by a tyrosyl residue for radioactive labeling with 125I. Under mild conditions, photolysis yielded highly reactive carbenes, responsible for the formation of covalent bonds to the CRF receptor. Ovine photoCRF was shown to bind to the high-affinity site of the CRF receptor with a similar Kd value as oCRF. When radioactively iodinated ovine photoCRF (ovine 125I-photoCRF) was covalently linked to rat CRF receptor, type 1 (rCRFR1), permanently transfected into human embryonic kidney (HEK) 293 cells, a highly glycosylated 75-kDa protein was identified with SDS/PAGE. The specificity of ovine 125I-photoCRF was demonstrated by the finding that this analog could be displaced from the receptor by oCRF, but not other unrelated peptides such as vasoactive intestinal peptide. The observed size of the 75-kDa cross-link was in agreement with the molecular weight reported earlier for native CRFR1 from rat brain. Deglycosylation of the 75-kDa cross-link with peptide:N-glycosidase (PNGase) yielded a 46-kDa protein, in agreement with the molecular weight estimated from cDNA coding for rat CRFR1. The developed CRF analog, photoCRF, is expected to facilitate future biochemical and physiological analysis of CRF receptors and--by analogous strategies--of other peptide receptors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High molecular weight kininogen (HK) and factor XII are known to bind to human umbilical vein endothelial cells (HUVEC) in a zinc-dependent and saturable manner indicating that HUVEC express specific binding site(s) for those proteins. However, identification and immunochemical characterization of the putative receptor site(s) has not been previously accomplished. In this report, we have identified a cell surface glycoprotein that is a likely candidate for the HK binding site on HUVECs. When solubilized HUVEC membranes were subjected to an HK-affinity column in the presence or absence of 50 microM ZnCl2 and the bound membrane proteins eluted, a single major protein peak was obtained only in the presence of zinc. SDS/PAGE analysis and silver staining of the protein peak revealed this protein to be 33 kDa and partial sequence analysis matched the NH2 terminus of gC1q-R, a membrane glycoprotein that binds to the globular "heads" of C1q. Two other minor proteins of approximately 70 kDa and 45 kDa were also obtained. Upon analysis by Western blotting, the 33-kDa band was found to react with several monoclonal antibodies (mAbs) recognizing different epitopes on gC1q-R. Ligand and dot blot analyses revealed zinc-dependent binding of biotinylated HK as well as biotinylated factor XII to the isolated 33-kDa HUVEC molecule as well as recombinant gC1q-R. In addition, binding of 125I-HK to HUVEC cells was inhibited by selected monoclonal anti-gC1q-R antibodies. C1q, however, did not inhibit 125I-HK binding to HUVEC nor did those monoclonals known to inhibit C1q binding to gC1q-R. Taken together, the data suggest that HK (and factor XII) bind to HUVECs via a 33-kDa cell surface glycoprotein that appears to be identical to gC1q-R but interact with a site on gC1q-R distinct from that which binds C1q.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Effective invasion of alfalfa by Rhizobium meliloti Rm1021 normally requires the presence of succinoglycan, an exopolysaccharide (EPS) produced by the bacterium. However, Rm1021 has the ability to produce a second EPS (EPS II) that can suppress the symbiotic defects of succinoglycan-deficient strains. EPS II is a polymer of modified glucose-(beta-1,3)-galactose subunits and is produced by Rm1021 derivatives carrying either an expR101 or mucR mutation. If the ability to synthesize succinoglycan is blocked genetically, expR101 derivatives of Rm1021 are nodulation-proficient, whereas mucR derivatives of Rm1021 are not. The difference in nodulation proficiency between these two classes of EPS II-producing strains is due to the specific production of a low molecular weight form of EPS II by expR101 strains. A low molecular weight EPS II fraction consisting of 15-20 EPS II disaccharide subunits efficiently allows nodule invasion by noninfective strains when present in amounts as low as 7 pmol per plant, suggesting that low molecular weight EPS II may act as a symbiotic signal during infection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The maize endosperm-specific gene shrunken2 (Sh2) encodes the large subunit of the heterotetrameric starch synthetic enzyme adenosine diphosphoglucose pyrophosphorylase (AGP; EC 2.7.7.27). Here we exploit an in vivo, site-specific mutagenesis system to create short insertion mutations in a region of the gene known to be involved in the allosteric regulation of AGP. The site-specific mutagen is the transposable element dissociation (Ds). Approximately one-third (8 of 23) of the germinal revertants sequenced restored the wild-type sequence, whereas the remaining revertants contained insertions of 3 or 6 bp. All revertants retained the original reading frame 3' to the insertion site and involved the addition of tyrosine and/or serine. Each insertion revertant reduced total AGP activity and the amount of the SH2 protein. The revertant containing additional tyrosine and serine residues increased seed weight 11-18% without increasing or decreasing the percentage of starch. Other insertion revertants lacking an additional serine reduced seed weight. Reduced sensitivity to phosphate, a long-known inhibitor of AGP, was found in the high seed-weight revertant. This alteration is likely universally important since insertion of tyrosine and serine in the potato large subunit of AGP at the comparable position and expression in Escherichia coli also led to a phosphate-insensitive enzyme. These results show that single gene mutations giving rise to increased seed weight, and therefore perhaps yield, are clearly possible in a plant with a long history of intensive and successful breeding efforts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ob gene product, leptin, apparently exclusively expressed in adipose tissue, is a signaling factor regulating body weight homeostasis and energy balance. ob gene expression is increased in obese rodents and regulated by feeding, insulin, and glucocorticoids, which supports the concept that ob gene expression is under hormonal control, which is expected for a key factor controlling body weight homeostasis and energy balance. In humans, ob mRNA expression is increased in gross obesity; however, the effects of the above factors on human ob expression are unknown. We describe the structure of the human ob gene and initial functional analysis of its promoter. The human ob gene's three exons cover approximately 15 kb of genomic DNA. The entire coding region is contained in exons 2 and 3, which are separated by a 2-kb intron. The first small 30-bp untranslated exon is located >10.5 kb upstream of the initiator ATG codon. Three kilobases of DNA upstream of the transcription start site has been cloned and characterized. Only 217 bp of 5' sequence are required for basal adipose tissue-specific expression of the ob gene as well as enhanced expression by C/EBPalpha. Mutation of the single C/EBPalpha site in this region abolished inducibility of the promoter by C/EBPalpha in cotransfection assays. The gene structure will facilitate our analysis of ob mutations in human obesity, whereas knowledge of sequence elements and factors regulating ob gene expression should be of major importance in the prevention and treatment of obesity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method for isolating and cloning mRNA populations from individual cells in living, intact plant tissues is described. The contents of individual cells were aspirated into micropipette tips filled with RNA extraction buffer. The mRNA from these cells was purified by binding to oligo(dT)-linked magnetic beads and amplified on the beads using reverse transcription and PCR. The cell-specific nature of the isolated mRNA was verified by creating cDNA libraries from individual tomato leaf epidermal and guard cell mRNA preparations. In testing the reproducibility of the method, we discovered an inherent limitation of PCR amplification from small amounts of any complex template. This phenomenon, which we have termed the "Monte Carlo" effect, is created by small and random differences in amplification efficiency between individual templates in an amplifying cDNA population. The Monte Carlo effect is dependent upon template concentration: the lower the abundance of any template, the less likely its true abundance will be reflected in the amplified library. Quantitative assessment of the Monte Carlo effect revealed that only rare mRNAs (< or = 0.04% of polyadenylylated mRNA) exhibited significant variation in amplification at the single-cell level. The cDNA cloning approach we describe should be useful for a broad range of cell-specific biological applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Animals from flies to humans adjust their development in response to environmental conditions through a series of developmental checkpoints, which alter the sensitivity of organs to environmental perturbation. Despite their importance, we know little about the molecular mechanisms through which this change in sensitivity occurs. Here we identify two phases of sensitivity to larval nutrition that contribute to plasticity in ovariole number, an important determinant of fecundity, in Drosophila melanogaster. These two phases of sensitivity are separated by the developmental checkpoint called "critical weight"; poor nutrition has greater effects on ovariole number in larvae before critical weight than after. We find that this switch in sensitivity results from distinct developmental processes. In precritical weight larvae, poor nutrition delays the onset of terminal filament cell differentiation, the starting point for ovariole development, and strongly suppresses the rate of terminal filament addition and the rate of increase in ovary volume. Conversely, in postcritical weight larvae, poor nutrition affects only the rate of increase in ovary volume. Our results further indicate that two hormonal pathways, the insulin/insulin-like growth factor and the ecdysone-signaling pathways, modulate the timing and rates of all three developmental processes. The change in sensitivity in the ovary results from changes in the relative contribution of each pathway to the rates of terminal filament addition and increase in ovary volume before and after critical weight. Our work deepens our understanding of how hormones act to modify the sensitivity of organs to environmental conditions, thereby affecting their plasticity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our objective was to determine the coordination of transcript and/or protein abundances of stromal enzymes during leaf senescence. First trifolioliate leaves of Phaseolus vulgaris L. plants were sampled beginning at the time of full leaf expansion; at this same time, half of the plants were switched to a nutrient solution lacking N. Total RNA and soluble protein abundances decreased after full leaf expansion whereas chlorophyll abundance remained constant; N stress enhanced the decline in these traits. Abundances of ribulose-1,5-bisposphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39), Rubisco activase and phosphoribulokinase (Ru5P kinase; EC 2.7.1.19) decreased after full leaf expansion in a coordinated manner for both treatments. In contrast, adenosine diphosphate glucose (ADPGlc) pyrophosphorylase (EC 2.7.7.27) abundance was relatively constant during natural senescence but did decline similar to the other enzymes under N stress. Northern analyses indicated that transcript abundances for all enzymes declined markedly on a fresh-weight basis just after full leaf expansion. This rapid decline was particularly strong for the Rubisco small subunit (rbcS) transcript. The decline was enhanced by N stress for rbcS and Rubisco activase (rca), but not for Ru5P kinase (prk) and ADPGlc pyrophosphorylase (agp). Transcripts of the Clp protease subunits clpC and clpP declined in abundance just after full leaf expansion, similar to the other mRNA species. When Northern blots were analyzed using equal RNA loads, rbcS transcripts still declined markedly just after full leaf expansion whereas rca and clpC transcripts increased over time. The results indicated that senescence was initiated near the time of full leaf expansion, was accelerated by N stress, and was characterized by large decline in transcripts of stromal enzymes. The decreased mRNA abundances were in general associated with steadily declining stromal protein abundances, with ADPGlc pyrophosphorylase being the notable exception. Transcript analyses for the Clp subunits supported a recent report (Shanklin et al., 1995, Plant Cell 7: 1713--1722) indicating that the Clp protease subunits were constitutive throughout development and suggested that ClpC and ClpP do not function as a senescence-specific proteolytic system in Phaseolus.