987 resultados para Source profiles
Resumo:
The principle of operation of a dual current source converter is briefly explained. The combination of two single current source converters (SCSC) to form a ``dual (duplex) current source converter'' (DCSC) is proposed. The DCSC is shown to have the following merits: 1) it retains all the advantages of the SCSC; 2) it reduces the harmonic content of the current waveform considerably; and 3) since the load current is shared equally between two current source converters, ratings of the individual components employed in the circuit are considerably lowered. A DCSC can be an attractive choice for sophisticated large horsepower drives where a good performance of the drive rather than cost is a prime factor. An open-loop control scheme employing the DCSC for an ac motor drive has been successfully implemented in the laboratory. Oscillograms of the improved load current waveforms are shown.
Resumo:
Amongv arioums ethodtsh,e t ransmissliionne o r thei mpedantcueb em ethohda sb eenm ospt opulafro r thee xperimenetavla luatioonf thea cousticiaml pedanocef a terminatioTnh. ee xistinmg ethodisn,c luding theo nesre porteeda rlierb, y thea uthorrse quirleo catioonf thes oundp ressumrei nima nd/orm axima, or elsem akeu se0 f somei terativep rocedureTsh. e presenpt aperd ealsw ith a methodo f analysios f standinwga vews hichd oesn otd epenodn anyo f thesein volvepdr ocedureIts i.s applicabtloe thec aseo f stationarays w ella sm ovingm ediaI.t enableosn to evaluatteh e impedancoef anyp assivbel ackb ox,a s well as the aeroacoustcich aracteristicosf a sourceo f pulsatingg asf low, with the leaste xperimentawl ork andc omputatiotinm ea ndw itht hee xtraa dvantagoef usinga givenim pedanctueb ef or wavelengtahss largea s fourt imesit s lengthA. methodo f externaml easuremenntost, involvinugs eo f anyi mpedance tubef, or evaluatintgh ea eroacouscthica racteristoicf as sourcoef pulsatingga sf lowi s alsod ealtw ith, based on the definition of attenuation or insertion loss of a muffler.
Resumo:
Higher order LCL filters are essential in meeting the interconnection standard requirement for grid-connected voltage source converters. LCL filters offer better harmonic attenuation and better efficiency at a smaller size when compared to the traditional L filters. The focus of this paper is to analyze the LCL filter design procedure from the point of view of power loss and efficiency. The IEEE 1547-2008 specifications for high-frequency current ripple are used as a major constraint early in the design to ensure that all subsequent optimizations are still compliant with the standards. Power loss in each individual filter component is calculated on a per-phase basis. The total inductance per unit of the LCL filter is varied, and LCL parameter values which give the highest efficiency while simultaneously meeting the stringent standard requirements are identified. The power loss and harmonic output spectrum of the grid-connected LCL filter is experimentally verified, and measurements confirm the predicted trends.
Resumo:
Queens of the primitively eusocial wasp Ropalidia marginata appear to maintain reproductive monopoly through pheromone rather than through physical aggression. Upon queen removal, one of the workers (potential queen, PQ) becomes extremely aggressive but drops her aggression immediately upon returning the queen. If the queen is not returned, the PQ gradually drops her aggression and becomes the next queen of the colony. In a previous study, the Dufour's gland was found to be at least one source of the queen pheromone. Queen-worker classification could be done with 100% accuracy in a discriminant analysis, using the compositions of their respective Dufour's glands. In a bioassay, the PQ dropped her aggression in response to the queen's Dufour's gland macerate, suggesting that the queen's Dufour's gland contents mimicked the queen herself. In the present study, we found that the PQ also dropped her aggression in response to the macerate of a foreign queen's Dufour's gland. This suggests that the queen signal is perceived across colonies. This also suggests that the Dufour's gland in R. marginata does not contain information about nestmateship, because queens are attacked when introduced into foreign colonies, and hence PQ is not expected to reduce her aggression in response to a foreign queen's signal. The latter conclusion is especially significant because the Dufour's gland chemicals are adequate to classify individuals correctly not only on the basis of fertility status (queen versus worker) but also according to their colony membership, using discriminant analysis. This leads to the additional conclusion (and precaution) that the ability to statistically discriminate organisms using their chemical profiles does not necessarily imply that the organisms themselves can make such discrimination. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This paper proposes a compact electric discharge plasma source for controlling NOX emission in diesel engine exhaust. An automobile ignition coil was used to generate the high voltage pulse using flyback topology. This design is aimed at retrofitting the existing catalytic converters with pulse assisted cleaning technique. In this paper we bring out a relative comparison of discharge plasma and plasma-adsorbent process at different gas flow rates. Activated alumina was used as adsorbent. The main emphasis is laid on the development of a compact pulse source from a DC supply for the removal of NOX from the filtered diesel engine exhaust.
Resumo:
The source localization algorithms in the earlier works, mostly used non-planar arrays. If we consider scenarios like human-computer communication, or human-television communication where the microphones need to be placed on the computer monitor or television front panel, i.e we need to use the planar arrays. The algorithm proposed in 1], is a Linear Closed Form source localization algorithm (LCF algorithm) which is based on Time Difference of Arrivals (TDOAs) that are obtained from the data collected using the microphones. It assumes non-planar arrays. The LCF algorithm is applied to planar arrays in the current work. The relationship between the error in the source location estimate and the perturbation in the TDOAs is derived using first order perturbation analysis and validated using simulations. If the TDOAs are erroneous, both the coefficient matrix and the data matrix used for obtaining source location will be perturbed. So, the Total least squares solution for source localization is proposed in the current work. The sensitivity analysis of the source localization algorithm for planar arrays and non-planar arrays is done by introducing perturbation in the TDOAs and the microphone locations. It is shown that the error in the source location estimate is less when we use planar array instead of the particular non-planar array considered for same perturbation in the TDOAs or microphone location. The location of the reference microphone is proved to be important for getting an accurate source location estimate if we are using the LCF algorithm.
Resumo:
A new method based on analysis of a single diffraction pattern is proposed to measure deflections in micro-cantilever (MC) based sensor probes, achieving typical deflection resolutions of 1nm and surface stress changes of 50 mu N/m. The proposed method employs a double MC structure where the deflection of one of the micro-cantilevers relative to the other due to surface stress changes results in a linear shift of intensity maxima of the Fraunhofer diffraction pattern of the transilluminated MC. Measurement of such shifts in the intensity maxima of a particular order along the length of the structure can be done to an accuracy of 0.01mm leading to the proposed sensitivity of deflection measurement in a typical microcantilever. This method can overcome the fundamental measurement sensitivity limit set by diffraction and pointing stability of laser beam in the widely used Optical Beam Deflection method (OBDM).
Resumo:
The present paper aims at studying the performance characteristics of a subspace based algorithm for source localization in shallow water such as coastal water. Specifically, we study the performance of Multi Image Subspace Algorithm (MISA). Through first-order perturbation analysis and computer simulation it is shown that MISA is unbiased and statistically efficient. Further, we bring out the role of multipaths (or images) in reducing the error in the localization. It is shown that the presence of multipaths is found to improve the range and depth estimates. This may be attributed to the increased curvature of the wavefront caused by interference from many coherent multipaths.
Resumo:
Laser processing of structure sensitive hypereutectic ductile iron, a cast alloy employed for dynamically loaded automative components, was experimentally investigated over a wide range of process parameters: from power (0.5-2.5 kW) and scan rate (7.5-25 mm s(-1)) leading to solid state transformation, all the way through to melting followed by rapid quenching. Superfine dendritic (at 10(5) degrees C s(-1)) or feathery (at 10(4) degrees C s(-1)) ledeburite of 0.2-0.25 mu m lamellar space, gamma-austenite and carbide in the laser melted and martensite in the transformed zone or heat-affected zone were observed, depending on the process parameters. Depth of geometric profiles of laser transformed or melt zone structures, parameters such as dendrile arm spacing, volume fraction of carbide and surface hardness bear a direct relationship with the energy intensity P/UDb2, (10-100 J mm(-3)). There is a minimum energy intensity threshold for solid state transformation hardening (0.2 J mm(-3)) and similarly for the initiation of superficial melting (9 J mm(-3)) and full melting (15 J mm(-3)) in the case of ductile iron. Simulation, modeling and thermal analysis of laser processing as a three-dimensional quasi-steady moving heat source problem by a finite difference method, considering temperature dependent energy absorptivity of the material to laser radiation, thermal and physical properties (kappa, rho, c(p)) and freezing under non-equilibrium conditions employing Scheil's equation to compute the proportion of the solid enabled determination of the thermal history of the laser treated zone. This includes assessment of the peak temperature attained at the surface, temperature gradients, the freezing time and rates as well as the geometric profile of the melted, transformed or heat-affected zone. Computed geometric profiles or depth are in close agreement with the experimental data, validating the numerical scheme.
Resumo:
The source localization in shallow water is beset with problems arising from the presence of a large number of correlated multipaths. Nevertheless, given a complete knowledge of the water channel it is definitely possible to localize a source. A complete knowledge of the channel, however, is rarely available under most practical conditions. A new approach is proposed wherein the bottom reflection coefficients are not required; hence the bottom conditions need not be known. Further, because of the use of signal subspace for localization, the proposed approach is robust against the background noise (-20 dB) and channel depth uncertainty (10 lambda). All these nice features of the proposed approach are possible only when the array size is large (>40 sensors). (C) 1995 Acoustical Society of America.
Resumo:
Time-dependent wavepacket propagation techniques have been used to calculate the absorption spectrum and the resonance Raman excitation profiles of the n-pi* transition in azobenzene. A comparison of both the calculated absorption spectrum and excitation profiles with experiment has been made. From an analysis of the data, it is concluded that the Raman intensities are mainly due to resonance from the n-pi* transition and not from the pre-resonance of the pi-pi* transition, as reported earlier. We find that the isomerization pathway is through the inversion mechanism rather than by rotation. This is the first direct spectroscopic evidence for the isomerization pathway in trans-azobenzene.
Resumo:
Purpose - There are many library automation packages available as open-source software, comprising two modules: staff-client module and online public access catalogue (OPAC). Although the OPAC of these library automation packages provides advanced features of searching and retrieval of bibliographic records, none of them facilitate full-text searching. Most of the available open-source digital library software facilitates indexing and searching of full-text documents in different formats. This paper makes an effort to enable full-text search features in the widely used open-source library automation package Koha, by integrating it with two open-source digital library software packages, Greenstone Digital Library Software (GSDL) and Fedora Generic Search Service (FGSS), independently. Design/methodology/approach - The implementation is done by making use of the Search and Retrieval by URL (SRU) feature available in Koha, GSDL and FGSS. The full-text documents are indexed both in Koha and GSDL and FGSS. Findings - Full-text searching capability in Koha is achieved by integrating either GSDL or FGSS into Koha and by passing an SRU request to GSDL or FGSS from Koha. The full-text documents are indexed both in the library automation package (Koha) and digital library software (GSDL, FGSS) Originality/value - This is the first implementation enabling the full-text search feature in a library automation software by integrating it into digital library software.
Resumo:
We consider the problem of compression via homomorphic encoding of a source having a group alphabet. This is motivated by the problem of distributed function computation, where it is known that if one is only interested in computing a function of several sources, then one can at times improve upon the compression rate required by the Slepian-Wolf bound. The functions of interest are those which could be represented by the binary operation in the group. We first consider the case when the source alphabet is the cyclic Abelian group, Zpr. In this scenario, we show that the set of achievable rates provided by Krithivasan and Pradhan [1], is indeed the best possible. In addition to that, we provide a simpler proof of their achievability result. In the case of a general Abelian group, an improved achievable rate region is presented than what was obtained by Krithivasan and Pradhan. We then consider the case when the source alphabet is a non-Abelian group. We show that if all the source symbols have non-zero probability and the center of the group is trivial, then it is impossible to compress such a source if one employs a homomorphic encoder. Finally, we present certain non-homomorphic encoders, which also are suitable in the context of function computation over non-Abelian group sources and provide rate regions achieved by these encoders.