1000 resultados para Solovay-Kitaev algorithm
Resumo:
Single-species management objectives may not be consistent within mixed fisheries. They may lead species to unsafe situations, promote discarding of over-quota and/or misreporting of catches. We provide an algorithm for characterising bio-economic reference points for a mixed fishery as the steady-state solution of a dynamic optimal management problem. The optimisation problem takes into account: i) that species are fishing simultaneously in unselective fishing operations and ii)intertemporal discounting and fleet costs to relate reference points to discounted economic profits along optimal trajectories. We illustrate how the algorithm can be implemented by applying it to the European Northern Stock of Hake (Merluccius merluccius), where fleets also capture Northern megrim (Lepidorhombus whiffiagonis) and Northern anglerfish (Lophius piscatorius and Lophius budegassa). We find that optimal mixed management leads to a target reference point that is quite similar to the 2/3 of the Fmsy single-species (hake) target. Mixed management is superior to singlespecies management because it leads the fishery to higher discounted profits with higher long-term SSB for all species. We calculate that the losses due to the use of the Fmsy single-species (hake) target in this mixed fishery account for 11.4% of total discounted profits.
Resumo:
Coarse Particle sedimentation is studied by using an algorithm with no adjustable parameters based on stokesian dynamics. Only inter-particle interactions of hydrodynamic force and gravity are considered. The sedimentation of a simple cubic array of spheres is used to verify the computational results. The scaling and parallelism with OpenMP of the method are presented. Random suspension sedimentation is investigated with Mont Carlo simulation. The computational results are shown in good agreement with experimental fitting at the lower computational cost of O(N In N).
Resumo:
This project introduces an improvement of the vision capacity of the robot Robotino operating under ROS platform. A method for recognizing object class using binary features has been developed. The proposed method performs a binary classification of the descriptors of each training image to characterize the appearance of the object class. It presents the use of the binary descriptor based on the difference of gray intensity of the pixels in the image. It shows that binary features are suitable to represent object class in spite of the low resolution and the weak information concerning details of the object in the image. It also introduces the use of a boosting method (Adaboost) of feature selection al- lowing to eliminate redundancies and noise in order to improve the performance of the classifier. Finally, a kernel classifier SVM (Support Vector Machine) is trained with the available database and applied for predictions on new images. One possible future work is to establish a visual servo-control that is to say the reac- tion of the robot to the detection of the object.
Resumo:
9 p.