644 resultados para Skeletal-muscle Fibers
Resumo:
Glucose transporter 4 (GLUT4) expression in adipose tissue decreases during fasting. In skeletal muscle, we hypothesized that GLUT4 expression might be maintained in a beta-adrenergic-dependent way to ensure energy disposal for contractile function. Herein we investigate beta-blockade or beta-stimulation effects on GLUT4 expression in oxidative (soleus) and glycolytic [extensor digitorum longus (EDL)] muscles of fasted rats. Fasting increased GLUT4 mRNA in soleus (24%) and EDL (40%) but the protein content increased only in soleus (30%). beta 1-beta 2-, and beta 1-beta 2-beta 3-blockade decreased (20-30%) GLUT4 mRNA content in both muscles, although GLUT4 protein decreased only in EDL. When mRNA and GLUT4 protein regulations were discrepant, changes in the mRNA poly(A) tail length were detected, indicating a posttranscriptional modulation of gene expression. These results show that beta-adrenergic activity regulates GLUT4 gene expression in skeletal muscle during fasting, highlighting its participation in preservation of GLUT4 protein in glycolytic muscle. Muscle Nerve 40: 847-854, 2009
Resumo:
MuRF1 is a member of the RBCC (RING, B-box, coiled-coil) superfamily that has been proposed to act as an atrogin during muscle wasting. Here, we show that MuRF1 is preferentially induced in type-II muscle fibers after denervation. Fourteen days after denervation, MuRF1 protein was further elevated but remained preferentially expressed in type-II muscle fibers. Consistent with a fiber-type dependent function of MuRF1, the tibialis anterior muscle (rich in type-II muscle fibers) was considerably more protected in MuRF1-KO mice from muscle wasting when compared to soleus muscle with mixed fiber-types. We also determined fiber-type distributions in MuRF1/MuRF2 double-deficient KO (dKO) mice, because MuRF2 is a close homolog of MuRF1. MuRF1/MuRF2 dKO mice showed a profound loss of type-II fibers in soleus muscle. As a potential mechanism we identified the interaction of MuRF1/MuRF2 with myozenin-1, a calcineurin/NFAT regulator and a factor required for maintenance of type-II muscle fibers. MuRF1/MuRF2 dKO mice had lost myozenin-1 expression in tibialis anterior muscle, implicating MuRF1/MuRF2 as regulators of the calcineurin/NFAT pathway. In summary, our data suggest that expression of MuRF1 is required for remodeling of type-II fibers under pathophysiological stress states, whereas MuRF1 and MuRF2 together are required for maintenance of type-II fibers, possibly via the regulation of myozenin-1. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The aim of this study was to investigate the effect of high fat diet and different frequencies of swimming programs in the tibial anterior muscle in male Wistar rats. In conclussion, the aerobic training during two days/week and five days/week caused injuries in muscle fibers and the high fat diet did not cause statically significant results compared to normal diet.
Resumo:
The study aimed to verify the physiological injury behavior by stretching the soleus muscle of rats, using a noninvasive experimental model. Twenty-four rats were used and divided into three groups of eight animals: control group (A), group that performed tetanus followed by electrical stimulation and a sudden dorsiflexion of the left paw performed by a device equipped with a mechanism of muscle soleus rapid stretching (B); and a group that only received the tetanus (C). Three days later, the animals were killed, and the soleus muscle was resected and divided into three segments. Morphological changes indicative of muscle damage appeared in all three segments of group B. In a lesser degree, similar changes were also detected in muscles subjected to only tetanus. This model was effective; reproducing an injury similar to what occurs in human sports injuries.
Resumo:
Physical exercise and statins, which are recommended for the treatment of dyslipidemia, are independently associated to the occurrence of muscle injury. The objective is analyze the effect of aerobic exercise associated to the use of simvastatin on the morphology of the gastrocnemius muscle. Thirty Wistar rats were divided into six groups, two of which received a standard diet (1 sedentary and 1 exercised) and four (1 sedentary with medication, 1 sedentary without medication, 1 exercised with medication, 1 exercised without medication) received a hypercholesterolemic diet (standard diet with the addition of cholesterol and coconut oil). Simvastatin (20 mg/Kg) was administered five days a week for eight weeks, together with aerobic training on a treadmill (9.75 m/min) for 60 minutes a day. The gastrocnemius muscle was removed, sliced, stained with Hematoxylin-Eosin and submitted to a histochemical reaction to determine mitochondrial activity. The data were analyzed using a paired t-test, analysis of variance and Scheffe's post hoc test (p<0.05). Greater histological alterations were found in the medicated and exercised animals, with a greater frequency of occurrence as well. The histochemical analysis revealed that the medicated groups had fibers with more intensive mitochondrial activity alongside fibers with an absence of reaction. The morphometric analysis revealed no significant differences between groups. It is suggested that simvastatin is a medication that leads to the occurrence of muscle injury and its administration in association with physical activity may exacerbate these injuries. This finding may be related to cellular respiration.
Resumo:
Low level laser therapy (LLLT) is known for its positive results but studies on the biological and biomodulator characteristics of the effects produced in the skeletal muscle are Still lacking. In this Study the effects of two laser dosages, 5 or 10 J/cm(2), on the lesioned tibial muscle were compared. Gerbils previously lesioned by 100 g load impact were divided into three groups: GI (n = 5) controls, lesion non-irradiated; GII (n = 5), lesion irradiated with 5 J/Cm(2) and GIII (n = 5), lesion irradiated with 10 J/cm(2), and treated for 7 consecutive days with a laser He-Ne (lambda = 633 rim). After intracardiac perfusion, the muscles were dissected and reduced to small fragments, post-fixed in 1% osmium tetroxide, dehydrated in increasing alcohol concentrations, treated with propylene oxide and embedded in Spurr resin at 60 degrees C. Ultrafine Cuts examined on a transmission electron microscope (Jeol 1010) revealed in the control GI group a large number of altered Muscle fibers with degenerating mitochondria, intercellular substance containing degenerating cell fragments and budding blood capillaries with Underdeveloped endothelial cells. However, groups GII and GIII showed muscle fibers with few altered myofibrils, regularly contoured mitochondria, ample intermembrane spaces and dilated mitochondrial crests. The clean intercellular Substance showed numerous collagen fibers and capillaries with multiple abluminal processes, intraluminal protrusions and several pinocytic vesicles in endothelial cells. it was concluded that laser dosages of 5 or 10 J/cm(2) delivered by laser He-Ne (lambda = 633 rim) during 7 consecutive days increase mitochondrial activity in muscular fibers, activate fibroblasts and macrophages and stimulate angiogenesis, thus suggesting effectivity of laser therapy tinder these experimental conditions. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Myonecrosis with permanent loss of muscle mass is a relevant local toxic effect following envenomation with Bothrops jararacussu snake venom. Regeneration of adult skeletal muscle involves the activation of satellite cells, a process regulated by myogenic regulatory factors (MRF). MyoD is an MRF involved in both proliferation and differentiation of satellite cells. Androgens are modulators of skeletal muscle, known to increase muscle mass and strength. This study examined the hypothesis that anabolic androgens improve the muscle regeneration process in mice following envenomation by Bothrops jararacussu snake venom. Myonecrosis was induced by venom injection (30 g/50 l in physiological solution) over the extensor digitorum longus (EDL) muscles of mice. Nandrolone (ND) (6 mg/kg, sc) was administered after 12 h, 7 d, and 14 d following venom injection. The histological changes in EDL muscle at 1, 3, 7, and 21 d after muscle injury were analyzed by light microscopy. Cross-sectional areas of fibers were measured. MyoD was evaluated by immunofluorescence technique. Histological examination revealed the presence of a regeneration process in ND-treated animals, characterized by the appearance of some myotubes at 3 d, and numerous myotubes at 7 d from venom injection. Nandrolone treatment reduced the frequency of small fibers at 7 and 21 d after venom administration, and increased the frequency of large fibers at 7 d postinjury. Nandrolone also significantly augmented the expression of MyoD-positive cells at 7 and 21 d after envenomation. These results suggest that ND accelerates muscle regeneration and indicate the involvement of MyoD in this process.
Resumo:
The muscles can perform the same function in a specific segment (muscles of fast and slow contraction), and at the same time be antagonistic in relation to muscular action (flexors or extensors). The present research aimed to study the morphology, frequency and metabolism of fiber types and the contractile characteristics of extensor and flexors muscles of rabbit. We studied muscles anterior tibialis (AT), flexor digitorum supeficialis (FDS), extensor digitorum longus (EDL) and posterior tibialis (PT). The muscles were submitted to the techniques HE, NADH-TR and myofibrillar ATPase. In EDL and PT extensor muscles, the frequencies of red (SO + FOG) and white fibers (FG) were 68.77% and 31.23% versus 58.87% and 41.13%, respectively. In the AT and FDS flexor muscles, these frequencies were 75.14% and 24.86% versus 73.89% and 26.11%, respectively. In extensor muscles, the percentage of slow contraction fibers was 8.05% in EDL and 9.74% in PT, and in fast contraction, 91.95% in EDL and 90.26% in PT. In flexors, the slow contraction frequencies were 12.35% in AT and 8.17% in FDS, and in fast contraction, 87.65% and 91.83%, respectively. Skeletal muscles with antagonistic muscular actions (flexors and extensors) the morphological, contractile and metabolic characteristics are identical.
Resumo:
The effects of different feeding schemes on pacu Piaractus mesopotamicus early development were evaluated with respect to growth, survival, muscle development, and differential gene expression of MyoD and myogenin. The pacu larvae (4 days post hatch-dph, 0.77 mg wet weight) were given six feeding treatments intentionally designed to cause variations in the larvae growth rate: (A) only artemia nauplii; (CD) only a commercial diet; (ED) only a semi-purified experimental diet; (ACD) and (AED) two treatments that involved weaning; and (S) starvation. Early weaning from artemia nauplii to the formulated diets (ACD and AED) affected growth and survival of the pacu larvae compared with the exclusive use of artemia (A). Starvation (S) and the commercial diet (CD) caused total mortality in pacu larvae at 18 dph. The experimental diet (ED) assured low fish survival and growth. The skeletal muscle morphology was not affected by the delay in somatic growth from early weaning onto the formulated diets. Three distinct muscle compartments were observed throughout the larval development in treatments A, ACD and AED: superficial, deep and intermediate, accompanied by muscle thickening. Severe undernourishment caused drastic differences in growth and in the morphology of the muscle fibers. Pacu larvae fed only formulated diets (CD and ED) showed muscle characteristics similar to the larvae in starvation (S) during the first 15 dph. At 27 and 35 dph, a slight increase in epaxial muscle mass was noted in larvae fed only the experimental diet (ED). At 35 dph, we observed a high frequency of fibers >= 40 mu m in the larvae that were weaned onto the formulated diets (ACD and AED), indicative of hypertrophy. In contrast, the larvae fed only artemia nauplii (A) displayed a larger number of fibers with diameters <= 20 mu m, which is indicative of hyperplasia. The expression of the MyoD and myogenin genes in pacu larvae at 35 dph was not affected by initial feeding (p>0.05). In conclusion, the formulated diets used impaired pacu larvae growth and survival; therefore, they were inadequate for pacu, at least at the times they were introduced. Artemia nauplii were the most adequate food source during first feeding of the pacu, and they produced bigger fish upon completion of the experiment. Moreover, the contribution of hyperplasia to the skeletal muscle growth appeared higher in fast- than in slow-growing pacu larvae. (C) 2011 Elsevier By. All rights reserved.
Resumo:
The aim of the present study was to investigate the effect of oral supplementation of creatine on the muscular responses to aerobic training. Twelve purebred Arabian horses were submitted to aerobic training for 90 d, with and without creatine supplementation, and evaluated with respect to BW and BCS and to the area and frequency of the different types of muscle fibers in the gluteus medius. Supplementation consisted of the daily administration of 75 g of creatine monohydrate mixed into the ration for the 90 d of training. Physical conditioning was conducted on a high-performance treadmill, and training intensity was stipulated by calculating the velocity at which blood lactate reaches 4 mmol/L, determined monthly for each animal. The individual intensity of physical force at 80% of aerobic threshold was established. Morphometry of glutens medius muscle fibers was performed on frozen sections processed for histochemical analysis of myosin adenosine triphosphatase and immunohistochemistry of slow-contracting myosin. The results demonstrated that the animals maintained a moderate BCS without alteration of BW during the course of training, providing evidence of equilibrium between food intake and caloric expenditure during the study period. The present study demonstrated that aerobic training for 90 d caused hypertrophy of fiber types I (P = 0.04), IIA (P = 0.04), and IIX (P = 0.01), as well as an increase in the relative area occupied by type I fibers (P = 0.02) at the expense of type IIX fibers (P = 0.03), resulting in modifications of the contractile and metabolic characteristics of the gluteus medius muscle. It was not possible to show any beneficial effect from creatine on the skeletal muscle characteristics examined.
Resumo:
The myotomal muscle of Synbranchus marmoratus was investigated using histochemical and immunohistochemical reactions. This musculature is composed of a superficial red compartment, uniformly distributed around the trunk circumferentially and also in the lateral line. The red compartment fibers are small in diameter and have an oxidative metabolism, a high rate of glycogen and a negative reaction to alkaline and acid myofibrillar ATPase (mATPase). The white muscle forms the bulk of the muscle mass. Its fibers are large in diameter and have a glycolytic metabolism, a negative reaction to glycogen, a strong reaction to alkaline mATPase and a negative reaction to acid mATPase. Between these two compartments there is an intermediate layer of fibers presenting a mosaic metabolism pattern with a high rate of glycogen. These fibers stained moderately for alkaline and acid m-ATPase. Several clusters of red muscles were observed inside the white muscle. Each cluster is composed of three fiber types, with a predominance of red and intermediate fibers. Reactivity to anti-MHC BA-D5 was positive only in the intermediate fibers. Reactivity to anti-MHC SC-71 was negative in all fiber types.
Resumo:
The objective of this paper was to study the effect of sympathetic innervation on morphological and histochemical aspects of skeletal muscle tissue. Rabbit masseter muscle was studied using histochemical and immunohistochemical methods for periods of up to 18 months post-sympathectomy. The morphological and enzymatic characteristics of control masseter muscles were similar on both the left and right sides. The main features were muscle fibres with a mosaic pattern and a predominance of type IIa fibres, followed by type I. Type IIb fibres showed very low frequency. Sympathectomized animals showed varying degrees of metabolic and morphological alterations, especially 18 months after sympathectomy. The first five groups showed a higher frequency of type I fibres, whilst the oldest group showed a higher frequency of type lib fibres. In the oldest group, a significant variation in fibre diameter was observed. Many fibres showed small diameter, atrophy, hypertrophy, splitting, and necrosis. Areas with fibrosis were observed. Thus cervical sympathectomy induced morphological alterations in the masseter muscles. These alterations were, in part, similar to both denervation and myopathy. These findings indicate that sympathetic innervation contributes to the maintenance of the morphological and metabolic features of masseter muscle fibres.