883 resultados para Sintering additives
Resumo:
Pig meat production was valued at €290 (£198) million at farm gate in Republic of Ireland (ROI) in 2007. In Northern Ireland (NI) in 2006, pig meat was estimated to account for almost seven percent of gross turnover in the food and drinks processing sector at £190 (€280) million. Whilst researching for this report it emerged that comparable figures for the value of the pig meat industry on ROI and NI are not available. This report showed that pig production on the IOI has changed from a small-scale enterprise carried out by a large number of mixed farmers to a modern industry comprised of a small number of specialist producers operating large-scale units. Most products for retailers are prepared and packed in specialised cutting and processing units which may or may not be integrated in the slaughter plant. For some pork products, various additives such as salt, herbs and flavour enhancers are added. Pork products are then stored and transported, frozen or chilled to wholesale, retail and catering facilities for ultimate sale to consumers.
Resumo:
Plant-based whole foods provide thousands of bioactive metabolites to the human diet that reduce the risk of developing chronic diseases. β-Caryophyllene (CAR) is a common constituent of the essential oil of numerous plants, vegetables, fruits and medicinal herbs, and has been used as a flavouring agent since the 1930 s. Here, we report the antioxidant activity of CAR, its protective effect on liver fibrosis and its inhibitory capacity on hepatic stellate cell (HSC) activation. CAR was tested for the inhibition of lipid peroxidation and as a free radical scavenger. CAR had higher inhibitory capacity on lipid peroxidation than probucol, α-humulene and α-tocopherol. Also, CAR showed high scavenging activities against hydroxyl radical and superoxide anion. The activity of 5-lipoxygenase, an enzyme that actively participates in fibrogenesis, was significantly inhibited by CAR. Carbon tetrachloride-treated rats received CAR at 2, 20 and 200 mg/kg. CAR significantly improved liver structure, and reduced fibrosis and the expression of Col1a1, Tgfb1 and Timp1 genes. Oxidative stress was used to establish a model of HSC activation with overproduction of extracellular matrix proteins. CAR (1 and 10 μm) increased cell viability and significantly reduced the expression of fibrotic marker genes. CAR, a sesquiterpene present in numerous plants and foods, is as a natural antioxidant that reduces carbon tetrachloride-mediated liver fibrosis and inhibits hepatic cell activation.
Resumo:
Grup de Recerca en Enginyeria de Producte, Procés i Producció de la Universitat de Girona té en les seves instal•lacions una RepRap model Prusa Mendel. Un dels seus àmbits d’investigació és el sector mèdic. Una de les aplicacions més innovadores de les tecnologies additives, emmarcada dins del camp mèdic, és la fabricació de scaffolds. En la medicina regenerativa, els scaffolds s’utilitzen com estructures biodegradables implantables que serveixen de base per a la correcte reproducció de teixit a partir de cèl•lules no diferenciades. L’objecte del projecte és aconseguir fabricar scaffolds amb la Reprap. Per tald’assolir aquest objectiu final caldran molts passos previs. En el moment que s’inicia elpresent projecte la RepRap té tots els seus components muntats, el cablejat instal•lat i el firmware inicial a la placa. Així, en primer lloc cal obtenir una correcta comunicació entre la màquina i l’ordinador a través del qual es podrà accedir a la placa per tal de realizar ajustaments. Una vegada la màquina obeeixi les ordres de moviment en la magnitud i la direcció desitjada serà el moment d’ajustar els paràmetres propis de la impressió. Aquests varien en funció de l’extrusor i el material a utilitzar. En aquest punt es passarà a dissenyar i fabricar diferents tipus de scaffolds variant les estratègies i les geometries. Aquests dissenys seran testats mecànicament a compressió. També seran analitzats geomètricament i se’n determinarà la porositat. Finalment, a partir de l’anàlisi dels resultats s’intentarà trobar una relació entre les diferents formes geomètriques, les porositats i la resistència
Resumo:
Here we present a processing route to produce multi-structured ceramic foams based on the combination of particle-stabilized foams with polymeric sponges to produce positive and negative templating structures. Polyester sponges are infiltrated with freshly produced calcium aluminate alumina foams and upon sintering either positive templating structures are produced when wetting the sponges, or negative templating foams with a percolating pore network are obtained when completely filling the sponges. Additionally, by combining different layers of these particle-stabilized foam infiltrated sponges, various different structures can be produced, including sandwich structures, pore size gradients, and ceramic bone-like structures applying to different types of bone. The particle-stabilized foams used were in situ self-hardening calcium aluminate cement enriched alumina foams to obtain crack-free samples with pore interconnections and tailorable pore sizes.
Resumo:
Little attention has been paid so far to the influence of the chemical nature of the substance when measuring δ 15N by elemental analysis (EA)-isotope ratio mass spectrometry (IRMS). Although the bulk nitrogen isotope analysis of organic material is not to be questioned, literature from different disciplines using IRMS provides hints that the quantitative conversion of nitrate into nitrogen presents difficulties. We observed abnormal series of δ 15N values of laboratory standards and nitrates. These unexpected results were shown to be related to the tailing of the nitrogen peak of nitrate-containing compounds. A series of experiments were set up to investigate the cause of this phenomenon, using ammonium nitrate (NH4NO3) and potassium nitrate (KNO3) samples, two organic laboratory standards as well as the international secondary reference materials IAEA-N1, IAEA-N2-two ammonium sulphates [(NH4)2SO4]-and IAEA-NO-3, a potassium nitrate. In experiment 1, we used graphite and vanadium pentoxide (V2O5) as additives to observe if they could enhance the decomposition (combustion) of nitrates. In experiment 2, we tested another elemental analyser configuration including an additional section of reduced copper in order to see whether or not the tailing could originate from an incomplete reduction process. Finally, we modified several parameters of the method and observed their influence on the peak shape, δ 15N value and nitrogen content in weight percent of nitrogen of the target substances. We found the best results using mere thermal decomposition in helium, under exclusion of any oxygen. We show that the analytical procedure used for organic samples should not be used for nitrates because of their different chemical nature. We present the best performance given one set of sample introduction parameters for the analysis of nitrates, as well as for the ammonium sulphate IAEA-N1 and IAEA-N2 reference materials. We discuss these results considering the thermochemistry of the substances and the analytical technique itself. The results emphasise the difference in chemical nature of inorganic and organic samples, which necessarily involves distinct thermochemistry when analysed by EA-IRMS. Therefore, they should not be processed using the same analytical procedure. This clearly impacts on the way international secondary reference materials should be used for the calibration of organic laboratory standards.
Resumo:
Ammonia gas detection by pure and catalytically modified WO3 based gas sensor was analysed. The sensor response of pure WO3 to NH3 was not only rather low but also presented an abnormal behaviour, probably due to the unselective oxidation of ammonia to NOx. Copper and vanadium were introduced in different concentrations and the resulting material was annealed at different temperatures in order to improve the sensing properties for NH3 detection. The introduction of copper and vanadium as catalytic additives improved the response to NH3 and also eliminated the abnormal behaviour. Possible mechanisms of NH3 reaction over these materials are discussed. Sensor responses to other gases like NO2 or CO and the interference of humidity on ammonia detection were also analysed so as to choose the best sensing element.
Resumo:
Surfactants are used as additives in topical pharmaceuticals and drug delivery systems. The biocompatibility of amino acid-based surfactants makes them highly suitable for use in these fields, but tests are needed to evaluate their potential toxicity. Here we addressed the sensitivity of tumor (HeLa, MCF-7) and non-tumor (3T3, 3T6, HaCaT, NCTC 2544) cell lines to the toxic effects of lysine-based surfactants by means of two in vitro endpoints (MTT and NRU). This comparative assay may serve as a reliable approach for predictive toxicity screening of chemicals prior to pharmaceutical applications. After 24-h of cell exposure to surfactants, differing toxic responses were observed. NCTC 2544 and 3T6 cell lines were the most sensitive, while both tumor cells and 3T3 fibroblasts were more resistant to the cytotoxic effects of surfactants. IC50-values revealed that cytotoxicity was detected earlier by MTT assay than by NRU assay, regardless of the compound or cell line. The overall results showed that surfactants with organic counterions were less cytotoxic than those with inorganic counterions. Our findings highlight the relevance of the correct choice and combination of cell lines and bioassays in toxicity studies for a safe and reliable screen of chemicals with potential interest in pharmaceutical industry.
Resumo:
Previous Iowa DOT sponsored research has shown that some Class C fly ashes are ementitious (because calcium is combined as calcium aluminates) while other Class C ashes containing similar amounts of elemental calcium are not (1). Fly ashes from modern power plants in Iowa contain significant amounts of calcium in their glassy phases, regardless of their cementitious properties. The present research was based on these findings and on the hyphothesis that: attack of the amorphous phase of high calcium fly ash could be initiated with trace additives, thus making calcium available for formation of useful calcium-silicate cements. Phase I research was devoted to finding potential additives through a screening process; the likely chemicals were tested with fly ashes representative of the cementitious and non-cementitious ashes available in the state. Ammonium phosphate, a fertilizer, was found to produce 3,600 psi cement with cementitious Neal #4 fly ash; this strength is roughly equivalent to that of portland cement, but at about one-third the cost. Neal #2 fly ash, a slightly cementitious Class C, was found to respond best with ammonium nitrate; through the additive, a near-zero strength material was transformed into a 1,200 psi cement. The second research phase was directed to optimimizing trace additive concentrations, defining the behavior of the resulting cements, evaluating more comprehensively the fly ashes available in Iowa, and explaining the cement formation mechanisms of the most promising trace additives. X-ray diffraction data demonstrate that both amorphous and crystalline hydrates of chemically enhanced fly ash differ from those of unaltered fly ash hydrates. Calciumaluminum- silicate hydrates were formed, rather than the expected (and hypothesized) calcium-silicate hydrates. These new reaction products explain the observed strength enhancement. The final phase concentrated on laboratory application of the chemically-enhanced fly ash cements to road base stabilization. Emphasis was placed on use of marginal aggregates, such as limestone crusher fines and unprocessed blow sand. The nature of the chemically modified fly ash cements led to an evaluation of fine grained soil stabilization where a wide range of materials, defined by plasticity index, could be stabilized. Parameters used for evaluation included strength, compaction requirements, set time, and frost resistance.
Resumo:
To evaluate the various factors influencing the stability of granular base course mixes, three primary goals were included in the project: (1) determination of a suitable and realistic laboratory method of compaction; (2) effect of gradation, density and mineralogy of the fines on sheara ing strength; and (3) possible improvement of the shear strength with organic and inorganic chemical stabilization additives.
Resumo:
The implementation of warm-mix asphalt (WMA) is becoming more widespread with a growing number of contractors utilizing various WMA technologies. Early research suggests WMA may be more susceptible to moisture damage than traditional hot-mix asphalt (HMA) mixes. The objectives of this study are to test the binder and mix properties of WMA technologies for both field- and laboratory-produced mixes to determine the performance of WMA compared to traditional HMA. Field- and laboratory-produced mixes were studied. The laboratory-produced mixes compared HMA control mixes with WMA mixes that had the same mix design. The WMA technologies used for the laboratory study were Advera, Sasobit, and Evotherm. The field study tested four WMA field-produced mixes. Each of the four mixes had a corresponding control HMA mix. The WMA technologies used in the field study included: Evotherm 3G/Revix, Sasobit, and Double Barrel Green Foaming. The three main factors for this study were WMA/HMA, moisture-conditioned/not moisture-conditioned, and reheated/not reheated. Mixes were evaluated based on performance tests. Binder testing was performed to determine the rheological differences between HMA and WMA binders to determine if binder grade requirements change with the addition of WMA additives. The conclusions of this study are as follows: Reduced mixing and compaction temperatures were achieved. Statistical differences were found when comparing tensile strength ratio (TSR) values for both laboratory- and field-produced mixes. In the laboratory, none of the WMA additives performed as well as the HMA. For the field mixes, all TSR values passed Iowa’s minimum specification of 0.8 but, on average, WMA is lower compared to HMA TSR values. Dynamic modulus results show that, on average, HMA will have higher dynamic modulus values. This means the HMA exhibits stiffer material properties compared to WMA; this may not necessarily mean superior performance in all cases. Flow number results show that WMA has reduced flow number values compared to HMA. The only exception was the fourth field mix and weather delayed production of the control mix by nine days. The laboratory mixes showed that flow number values increased significantly with the addition of recycled asphalt pavement (RAP). In the laboratory study, Advera reduced TSR values. Given that Advera is a foaming agent, the increase in moisture susceptibility is likely attributed to the release of water necessary for the improvement of the workability of the asphalt mixture.
Resumo:
[spa] En este estudio se presentan los resultados del trabajo realizado sobre la calidad de las diferentes producciones de terra sigillata comercializadas en época de Augusto, como paso previo al estudio del consumo. A partir de la apiicación de técnicas arqueométricas, se han establecido criterios objetivos en algunos casos, cuantitativos como son la resistencia a la ruptura de las diferentes vajillas analizadas y la adherencia y el estado de sinterización de su barniz. De este modo, ha sido posible determinar la existencia de las diversas calidades, que deben influenciar el consumo cerámico.
Resumo:
Phase II of this study further evaluated the performance of plant-produced warm-mix asphalt (WMA) mixes by conducting additional mixture performance tests at a broader range of temperatures, adding additional pavements to the study, comparing virgin and recovered binder properties, performing pavement condition surveys, and comparing survey data with the Mechanistic Empirical Pavement Design Guide (MEPDG) forecast for pavement damage over 20 years of service life. Further objectives detailing curing behavior, quality assurance testing, and hybrid technologies were as follows: * Compare the predicted and observed field performance of existing WMA trials produced in the previous Phase I study to that of hot-mix asphalt (HMA) control sections to determine if Phase I conclusions are translating to the field; * Identify any curing effect (and timing of the effect) of WMA mixtures and binders in the field; * Determine how the field-compacted mixture properties and recovered binder properties of WMA compare to those of HMA over time for technologies common to Iowa; * Identify the protocols for WMA sample preparation for volumetric and performance testing that best simulate field conditions. The findings of this study indicate that WMA additives do show statistical differences in mixture properties in some of the mixes tested. These differences will not always be statistically different from mixture to mixture. Multiple factors, such as WMA additive type, amount of recycled asphalt material, construction conditions, and mixture variability all play a role in determining the extent of which WMA and HMA mixes differ. Other significant findings of this study include effects of curing, aging in recovered binders from HMA and WMA cores, and the influence of recycled asphalt shingles (RAS) used with WMA. These findings will be of interest to owner agencies and contractors utilizing WMA technologies.
Resumo:
In view of the energy, environmental, and economic advantages of the foamed asphalt process using local aggregates in cold mixes and the promising results from Research Project HR-212, a 4.2-mile section of county road in Muscatine County was built with foamed asphalt and local aggregates during August-September 1983. Extensive laboratory evaluation was carried out on five plant mixes representing foamed mixes used in the nine test sections, a laboratory prepared foamed mix, and a laboratory prepared hot mix similar to Plant Mix 1. The foamed mixes were compacted, cured under 15 curing conditions and tested for bulk specific gravity, Marshall stability at 77° F and at 140° F, cured moisture content, resilient modulus and effects of moisture damage due to freeze-thaw cycles, water soaking, and vacuum saturation. In addition, four sets of 83 core samples were taken at 1 to 15 months and tested for moisture content, specific gravity, Marshall stability, and resilient modulus. In summary, the test road has performed satisfactorily for almost two years. The few early construction problems encountered were to be expected for experimental projects dealing with new materials and technologies. Overall results to date are encouraging and foamed asphalt mixes have proved to have the potential as a viable base material in areas where marginal aggregates are available. It is hoped and expected that performance evaluation of the test sections will be continued and that more foamed asphalt trial projects will be constructed and monitored so that experiences and findings from this project can be verified and mix design criteria can be gradually established. For future foamed asphalt projects it is recommended that anti-stripping additives, such as hydrated lime, be added in view of the potential moisture susceptibility of foamed mixes observed in the laboratory evaluation.
Resumo:
Chloride ion penetration through concrete to reinforcing steel is causing the premature deterioration of numerous bridge decks in Iowa. The purpose of the research reported in this paper was to determine whether any of several additives or alternative deicing chemicals could inhibit corrosion of reinforcing steel. The deicers tested were calcium magnesium acetate (CMA), CMA plus NaCl (NaCl: sodium chloride), Quicksalt plus PCI, and CG-90, a polyphosphate solution being developed by Cargill. Two tests were established. First, steel coupons were placed in a 15% solution of a deicer and distilled water to determine which alternative deicer would cause the least amount of corrosion in solution. The coupons were weighed periodically to determine each coupon's weight loss from corrosion. The second test involved ponding a 15% solution of each material on reinforced concrete blocks. Weekly copper-copper sulfate electrical half-cell (CSE) potential readings were taken on each block to determine whether corrosive activity was occurring at the steel surface. When the ponding research was concluded, concrete samples were taken from one of the three blocks ponded with each deicer. The samples were used to determine the chloride ion content at the level of the steel. Results show that all the deicers were less corrosive than NaCl. Only pure CMA, however, significantly inhibited the corrosion of steel embedded in concrete.
Resumo:
A highway base course may be defined as a layer of granular material which lies immediately below the wearing surface of a pavement and must possess high resistance to deformation in order to withstand pressures imposed by traffic. A material commonly used for base course construction is crushed limestone. Sources of limestone, acceptable for highway bases in the state of Iowa, occur almost entirely in the Pennsylvanian, Mississippian and Devonian strata. Performance records of the latter two have been quite good, while material from the Pennsylvanian stratum has failed on numerous occasions. The study reported herein is one segment of an extensive research program on compacted crushed limestone used for flexible highway base courses. The primary goals of the total study are: 1. Determination of a suitable and realistic laboratory method of compaction. 2. Effect of gradation, and mineralogy of the fines, on shearing strength. 3. Possible improvement of the shear strength with organic and inorganic chemical stabilization additives. Although the study reported herein deals primarily with the third goal, information gathered from work on the first two was required for this investigation. The primary goal of this study was the evaluation of various factors of stability of three crushed limestones when treated with small amounts of type I Portland cement. Investigation of the untreated materials has indicated that shear strength alone is not the controlling factor for stability of crushed stone bases. Thus the following observations were made in addition to shear strength parameters, to more adequately ascertain the stability of the cement treated materials: 1. Volume change during consolidation and shear testing. 2. Pore pressure during shear. The consolidated-undrained triaxial shear test was used for determination of the above factors.