986 resultados para Simultaneous estimation
Resumo:
The amino acid composition of the protein from three strains of rat (Wistar, Zucker lean and Zucker obese), subjected to reference and high-fat diets has been used to determine the mean empirical formula, molecular weight and N content of whole-rat protein. The combined whole protein of the rat was uniform for the six experimental groups, containing an estimate of 17.3% N and a mean aminoacyl residue molecular weight of 103.7. This suggests that the appropriate protein factor for the calculation of rat protein from its N content should be 5.77 instead of the classical 6.25. In addition, an estimate of the size of the non-protein N mass in the whole rat gave a figure in the range of 5.5 % of all N. The combination of the two calculations gives a protein factor of 5.5 for the conversion of total N into rat protein.
Resumo:
Recommendations for statin use for primary prevention of coronary heart disease (CHD) are based on estimation of the 10-year CHD risk. It is unclear which risk algorithm and guidelines should be used in European populations. Using data from a population-based study in Switzerland, we first assessed 10-year CHD risk and eligibility for statins in 5,683 women and men 35 to 75 years of age without cardiovascular disease by comparing recommendations by the European Society of Cardiology without and with extrapolation of risk to age 60 years, the International Atherosclerosis Society, and the US Adult Treatment Panel III. The proportions of participants classified as high-risk for CHD were 12.5% (15.4% with extrapolation), 3.0%, and 5.8%, respectively. Proportions of participants eligible for statins were 9.2% (11.6% with extrapolation), 13.7%, and 16.7%, respectively. Assuming full compliance to each guideline, expected relative decreases in CHD deaths in Switzerland over a 10-year period would be 16.4% (17.5% with extrapolation), 18.7%, and 19.3%, respectively; the corresponding numbers needed to treat to prevent 1 CHD death would be 285 (340 with extrapolation), 380, and 440, respectively. In conclusion, the proportion of subjects classified as high risk for CHD varied over a fivefold range across recommendations. Following the International Atherosclerosis Society and the Adult Treatment Panel III recommendations might prevent more CHD deaths at the cost of higher numbers needed to treat compared with European Society of Cardiology guidelines.
Resumo:
Meiosis in triploids faces the seemingly insuperable difficulty of dividing an odd number of chromosome sets by two. Triploid vertebrates usually circumvent this problem through either asexuality or some forms of hybridogenesis, including meiotic hybridogenesis that involve a reproductive community of different ploidy levels and genome composition. Batura toads (Bufo baturae; 3n = 33 chromosomes), however, present an all-triploid sexual reproduction. This hybrid species has two genome copies carrying a nucleolus-organizing region (NOR+) on chromosome 6, and a third copy without it (NOR-). Males only produce haploid NOR+ sperm, while ova are diploid, containing one NOR+ and one NOR- set. Here, we conduct sibship analyses with co-dominant microsatellite markers so as (i) to confirm the purely clonal and maternal transmission of the NOR- set, and (ii) to demonstrate Mendelian segregation and recombination of the NOR+ sets in both sexes. This new reproductive mode in vertebrates ('pre-equalizing hybrid meiosis') offers an ideal opportunity to study the evolution of non-recombining genomes. Elucidating the mechanisms that allow simultaneous transmission of two genomes, one of Mendelian, the other of clonal inheritance, might shed light on the general processes that regulate meiosis in vertebrates.
Resumo:
The temporal dynamics of species diversity are shaped by variations in the rates of speciation and extinction, and there is a long history of inferring these rates using first and last appearances of taxa in the fossil record. Understanding diversity dynamics critically depends on unbiased estimates of the unobserved times of speciation and extinction for all lineages, but the inference of these parameters is challenging due to the complex nature of the available data. Here, we present a new probabilistic framework to jointly estimate species-specific times of speciation and extinction and the rates of the underlying birth-death process based on the fossil record. The rates are allowed to vary through time independently of each other, and the probability of preservation and sampling is explicitly incorporated in the model to estimate the true lifespan of each lineage. We implement a Bayesian algorithm to assess the presence of rate shifts by exploring alternative diversification models. Tests on a range of simulated data sets reveal the accuracy and robustness of our approach against violations of the underlying assumptions and various degrees of data incompleteness. Finally, we demonstrate the application of our method with the diversification of the mammal family Rhinocerotidae and reveal a complex history of repeated and independent temporal shifts of both speciation and extinction rates, leading to the expansion and subsequent decline of the group. The estimated parameters of the birth-death process implemented here are directly comparable with those obtained from dated molecular phylogenies. Thus, our model represents a step towards integrating phylogenetic and fossil information to infer macroevolutionary processes.
Resumo:
Selostus: Maassa olevan nitraattitypen arviointi simulointimallin avulla
Resumo:
Predictive groundwater modeling requires accurate information about aquifer characteristics. Geophysical imaging is a powerful tool for delineating aquifer properties at an appropriate scale and resolution, but it suffers from problems of ambiguity. One way to overcome such limitations is to adopt a simultaneous multitechnique inversion strategy. We have developed a methodology for aquifer characterization based on structural joint inversion of multiple geophysical data sets followed by clustering to form zones and subsequent inversion for zonal parameters. Joint inversions based on cross-gradient structural constraints require less restrictive assumptions than, say, applying predefined petro-physical relationships and generally yield superior results. This approach has, for the first time, been applied to three geophysical data types in three dimensions. A classification scheme using maximum likelihood estimation is used to determine the parameters of a Gaussian mixture model that defines zonal geometries from joint-inversion tomograms. The resulting zones are used to estimate representative geophysical parameters of each zone, which are then used for field-scale petrophysical analysis. A synthetic study demonstrated how joint inversion of seismic and radar traveltimes and electrical resistance tomography (ERT) data greatly reduces misclassification of zones (down from 21.3% to 3.7%) and improves the accuracy of retrieved zonal parameters (from 1.8% to 0.3%) compared to individual inversions. We applied our scheme to a data set collected in northeastern Switzerland to delineate lithologic subunits within a gravel aquifer. The inversion models resolve three principal subhorizontal units along with some important 3D heterogeneity. Petro-physical analysis of the zonal parameters indicated approximately 30% variation in porosity within the gravel aquifer and an increasing fraction of finer sediments with depth.
Resumo:
A method is proposed for the estimation of absolute binding free energy of interaction between proteins and ligands. Conformational sampling of the protein-ligand complex is performed by molecular dynamics (MD) in vacuo and the solvent effect is calculated a posteriori by solving the Poisson or the Poisson-Boltzmann equation for selected frames of the trajectory. The binding free energy is written as a linear combination of the buried surface upon complexation, SASbur, the electrostatic interaction energy between the ligand and the protein, Eelec, and the difference of the solvation free energies of the complex and the isolated ligand and protein, deltaGsolv. The method uses the buried surface upon complexation to account for the non-polar contribution to the binding free energy because it is less sensitive to the details of the structure than the van der Waals interaction energy. The parameters of the method are developed for a training set of 16 HIV-1 protease-inhibitor complexes of known 3D structure. A correlation coefficient of 0.91 was obtained with an unsigned mean error of 0.8 kcal/mol. When applied to a set of 25 HIV-1 protease-inhibitor complexes of unknown 3D structures, the method provides a satisfactory correlation between the calculated binding free energy and the experimental pIC5o without reparametrization.
Resumo:
A major issue in the application of waveform inversion methods to crosshole ground-penetrating radar (GPR) data is the accurate estimation of the source wavelet. Here, we explore the viability and robustness of incorporating this step into a recently published time-domain inversion procedure through an iterative deconvolution approach. Our results indicate that, at least in non-dispersive electrical environments, such an approach provides remarkably accurate and robust estimates of the source wavelet even in the presence of strong heterogeneity of both the dielectric permittivity and electrical conductivity. Our results also indicate that the proposed source wavelet estimation approach is relatively insensitive to ambient noise and to the phase characteristics of the starting wavelet. Finally, there appears to be little to no trade-off between the wavelet estimation and the tomographic imaging procedures.
Resumo:
The physical disector is a method of choice for estimating unbiased neuron numbers; nevertheless, calibration is needed to evaluate each counting method. The validity of this method can be assessed by comparing the estimated cell number with the true number determined by a direct counting method in serial sections. We reconstructed a 1/5 of rat lumbar dorsal root ganglia taken from two experimental conditions. From each ganglion, images of 200 adjacent semi-thin sections were used to reconstruct a volumetric dataset (stack of voxels). On these stacks the number of sensory neurons was estimated and counted respectively by physical disector and direct counting methods. Also, using the coordinates of nuclei from the direct counting, we simulate, by a Matlab program, disector pairs separated by increasing distances in a ganglion model. The comparison between the results of these approaches clearly demonstrates that the physical disector method provides a valid and reliable estimate of the number of sensory neurons only when the distance between the consecutive disector pairs is 60 microm or smaller. In these conditions the size of error between the results of physical disector and direct counting does not exceed 6%. In contrast when the distance between two pairs is larger than 60 microm (70-200 microm) the size of error increases rapidly to 27%. We conclude that the physical dissector method provides a reliable estimate of the number of rat sensory neurons only when the separating distance between the consecutive dissector pairs is no larger than 60 microm.
Resumo:
Les précipitations journalières extrêmes centennales ont été estimées à partir d'analyses de Gumbel et de sept formule empiriques effectuées sur des séries de mesures pluviométriques à 151 endroits de la Suisse pour deux périodes de 50 ans. Ces estimations ont été comparées avec les valeurs journalières maximales mesurées durant les 100 dernières années (1911-2010) afin de tester l'efficacité de ces sept formules. Cette comparaison révèle que la formule de Weibull serait la meilleure pour estimer les précipitations journalières centennales à partir de la série de mesures pluviométriques 1961-2010, mais la moins bonne pour la série de mesures 1911-1960. La formule de Hazen serait la plus efficace pour cette dernière période. Ces différences de performances entre les formules empiriques pour les deux périodes étudiées résultent de l'augmentation des précipitations journalières maximales mesurées de 1911 à 2010 pour 90% des stations en Suisse. Mais les différences entre les pluies extrêmes estimées à partir des sept formules empiriques ne dépassent pas 6% en moyenne.
Resumo:
Captan and folpet are two fungicides largely used in agriculture, but biomonitoring data are mostly limited to measurements of captan metabolite concentrations in spot urine samples of workers, which complicate interpretation of results in terms of internal dose estimation, daily variations according to tasks performed, and most plausible routes of exposure. This study aimed at performing repeated biological measurements of exposure to captan and folpet in field workers (i) to better assess internal dose along with main routes-of-entry according to tasks and (ii) to establish most appropriate sampling and analysis strategies. The detailed urinary excretion time courses of specific and non-specific biomarkers of exposure to captan and folpet were established in tree farmers (n = 2) and grape growers (n = 3) over a typical workweek (seven consecutive days), including spraying and harvest activities. The impact of the expression of urinary measurements [excretion rate values adjusted or not for creatinine or cumulative amounts over given time periods (8, 12, and 24 h)] was evaluated. Absorbed doses and main routes-of-entry were then estimated from the 24-h cumulative urinary amounts through the use of a kinetic model. The time courses showed that exposure levels were higher during spraying than harvest activities. Model simulations also suggest a limited absorption in the studied workers and an exposure mostly through the dermal route. It further pointed out the advantage of expressing biomarker values in terms of body weight-adjusted amounts in repeated 24-h urine collections as compared to concentrations or excretion rates in spot samples, without the necessity for creatinine corrections.
Resumo:
As a thorough aggregation of probability and graph theory, Bayesian networks currently enjoy widespread interest as a means for studying factors that affect the coherent evaluation of scientific evidence in forensic science. Paper I of this series of papers intends to contribute to the discussion of Bayesian networks as a framework that is helpful for both illustrating and implementing statistical procedures that are commonly employed for the study of uncertainties (e.g. the estimation of unknown quantities). While the respective statistical procedures are widely described in literature, the primary aim of this paper is to offer an essentially non-technical introduction on how interested readers may use these analytical approaches - with the help of Bayesian networks - for processing their own forensic science data. Attention is mainly drawn to the structure and underlying rationale of a series of basic and context-independent network fragments that users may incorporate as building blocs while constructing larger inference models. As an example of how this may be done, the proposed concepts will be used in a second paper (Part II) for specifying graphical probability networks whose purpose is to assist forensic scientists in the evaluation of scientific evidence encountered in the context of forensic document examination (i.e. results of the analysis of black toners present on printed or copied documents).