730 resultados para Silos - Ventilação
Resumo:
We used a Stark-Optoacoustic cell and hybrid waveguide resonators to perform an Infrared and Far Infrared Stark Spectroscopy study on some transitions of (CD3OH)-C-13. Different behaviours of the transitions in the presence of a d.c. electric field were observed. The Stark splittings of six FIR laser lines ranging from 34 to 136 MHz/kVcm(-1) were determined. The analysis of the behaviour of the IR and FIR transitions in the presence of the external electric fields gives important and exclusive information on the levels involved in the transitions.
Resumo:
A new ''Ritz'' program has been used for revising and expanding the assignment of the Fourier transform infrared and far-infrared spectrum of CH3OH. This program evaluates the energy levels involved in the assigned transitions by the Rydberg-Ritz combination principle and can tackle such perturbations as Fermi-type resonances or Coriolis interactions. Up to now this program has evaluated the energies of 2768 levels belonging to A-type symmetry and 4133 levels belonging to E-type symmetry of CH3OH. Here we present the assignment of almost 9600 lines between 350 and 950 cm(-1). The Taylor expansion coefficients for evaluating the energies of the levels involved in the transitions are also given. All of the lines presented in this paper correspond to transitions involving torsionally excited levels within the ground vibrational state. (C) 1995 Academic Press, Inc.
Resumo:
Twenty-five new laser lines have been obtained is the wavelength region from 155 to 830 mu m by optically pumping the CD2Cl2 (deuterated dichloromethane) molecule with a CW CO3 laser having a tunability range of 300 MHz. The wavelength, polarization relative to that of CO2 pumping radiation, and offset relative to the CO2 center frequency were determined for all of the new lines and some other already known laser emissions. For all of them we give also the relative intensity and the optimum pressure of operation.
Resumo:
We use a (CO2)-C-13 laser as optical pumping source to search for new THz laser lines generated from (CH3OH)-C-13. Nineteen new THz laser lines (also identified as far-infrared, FIR) ranging from 42.3 mu m (7.1 THz) to 717.7 mu m (0.42 THz) are reported. They are characterized in wavelength, offset, relative polarization, relative intensity, and optimum working pressure. We have assigned eight laser lines to specific rotational energy levels in the excited state associated with the C-O stretching mode. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
In this work we present high resolution Doppler limited absorption spectra measurements of the C-O stretching mode of (CH3OH)-C-13, obtained from diode laser spectroscopy, and the Fourier Transform spectrum obtained at 0. 12 cm-1 resolution. By using these data and previously known spectroscopic information, we determined the frequency and the J quantum number for the multiplets of the P and R(J) branches of the C-O stretching fundamental band. Infrared transitions in coincidence with emission lines of the regular CO2 laser and some of its isotope parents are pointed out.
Resumo:
We have revisited the assignments of the far-infrared laser lines emitted by (CH3OH)-C-13 by comparing the laser systems to a high resolution Fourier transform absorption spectrum of (CH3OH)-C-13. The absorption spectrum was analyzed by means of the ''Ritz'' program, which calculates the energy level values directly from the Rydberg-Ritz combination principle. We report new assignments for 11 FIR laser transitions, 17 frequency predictions for new possible laser lines, and we confirm 11 previous assignments. (C) 1996 Academic Press, Inc.
Resumo:
We have investigated the high-resolution Fourier transform spectrum of the C-O stretching fundamental band of CD3OH in order to assign far-infrared (FIR) laser transitions. The absorption spectrum was analyzed by means of the ''Ritz'' program, which calculates the energy level values directly from the Rydberg-Ritz combination principle. We have also used the ''LaseRitz'' program to facilitate the assignment of the FIR laser lines. As a consequence we could determine 12 new assignments, confirming 4 previously proposed ones and predicting new FIR laser emissions. (C) 1997 Academic Press.
Resumo:
The refractive index and the temperature coefficient of the optical path length change of tellurite (80TeO(2):20Li(2)O) and chalcogenide glasses (72.5Ga(2)S(3):27.5La(2)O(3)) were determined as a function of temperature (up to 150 degrees C) and wavelength (in the range between 454 and 632.8 nm). The tellurite glass exhibits the usual refractive index dispersion in the wavelength range analyzed, while anomalous refractive index dispersion was observed for the chalcogenide glass between 454 and 530 nm. The dispersion parameters were determined by means of the single-effective oscillator model. In addition, a strong dependence of the temperature coefficient of the optical path length on the photon energy and temperature was found for the chalcogenide glass. The latter was correlated to the shift of the optical band gap (or electronic edge) with temperature, which was interpreted by the electron-phonon interaction model. (C) 2007 American Institute of Physics.
Resumo:
We report the discovery of 57 new fir laser lines from (CD3OH)-C-13 molecule optically pumped by a waveguide CO2 laser of 300 MHz tunability. For all lines, precise frequency offset measurements between the CO2 line center and the center of the absorbing (CD3OH)-C-13 line were performed using the transferred Lamb-Dip technique. We have also measured directly the frequency of seven FIR laser lines by heterodyning with already known laser lines.We present a complete list of all known laser lines (134) and frequency measurements (24) for this molecule.
Resumo:
The results described in this work are part of a systematic search for long wavelength laser lines to be used in high magnetic field EPR applications and in plasma diagnostic. Four new far-infrared laser lines of CH2 = CF2 (1,1 difluoroethylene), optically pumped by a waveguide CO2 laser, have been discovered and characterized in wavelength, polarization relative to the pumping radiation and offset relative to the CO2 center frequency. New measurements of polarization and offset of 5 already known laser lines are also reported. A table of all of the known CO2 pumped FIR laser lines from this molecule is given.
Resumo:
In this work the thermal lens, thermal relaxation calorimetry and interferometric methods are applied to investigate the thermo-optical properties of tellurite glasses (in mol%: 80TeO(2)-20 Li2O(TeLi), 80TeO(2)-15Li(2)O-5TiO(2) (TeLiTi-5) and 80TeO(2)-10Li(2)O-10TiO(2) (TeLiTi-10)). Thermal diffusivity, thermal conductivity, specific heat and the temperature coefficients of refractive index, optical path length, thermal expansion and electronic polarizability were determined. The use of three independent methods was useful for a complete characterization of the studied tellurite glasses. In addition, our results showed that the thermal expansion coefficient and the temperature coefficient of the optical path length (dS/dT) were significantly modified with the introduction of titanium, which may be relevant for the application of these glasses in the photonic area. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
This experiment was carried out in the Microbiology Laboratory of UNESP-Jaboticabal, to evaluate the different species of microorganisms in high-moisture corn grain silage. The treatments were five percentages of corn cob in the silage (0, 5, 10, 15 and 20% DM) and four sampling periods after the opening of the silos (0, 2, 4 and 6 days), using a factorial arrangement in randomized block design with three replications. The growth of Lactobacillus was higher (P<0.01) in the silage prepared only with grains in relation to the other treatments. The presence of Clostridium differed (P<0.01) among the treatments, with values ranging from 1.30 and 3.32 log CFU/g of silage. It was concluded that the population of Lactobacillus was satisfactory to obtain a good fermentation of the silages, and the presence of corn cob facilitated the development of Clostridium and also of yeast and Enterobacteriaceae after the silos were opened.
Resumo:
This work had the objective of evaluating the effects of different percentages of corn (Zea mays L.) cob on the quality of the silage of high-moisture corn grains. The following treatments were studied: percentages of corn cob in the silage (0, 5, 10, 15 and 20%); period of sampling after opening the silos (zero, two, four and six days). The factorial arrangement 5 × 4 was studied according to a completely randomized block design with three replications. The variables studied were not affected by the sampling period. The buffering capacity and the pH were not affected by the cob, while the percent soluble carbohydrates and amoniacal nitrogen increasing until 1.2 and 1.89 unit percent, respectively. Increasing the amount of corn cobs reduced the contents of DM (from 63.9% to 58.6%), CP (from 10.0% to 7.3%), EE (from 4.87% to 3.92%) and the values of DMIVD (from 90.5% to 79.1%) in the silages and increasing the contents of acid detergente fiber (ADF) (from 3.3% to 12.9%) and neutral detergente fiber (NDF) (from 15.16% to 26.1%). The values of brute energy (BE) were not affected (P>0.01) by the cob corn in the silage.
Resumo:
The Ritz computer program, developed for facilitating the assignment of molecular Fourier transform absorption spectra and described in a previous work, determines the energy level values involved in the assigned transitions by the Rydberg-Ritz combination principle. Combining the data obtained from the analyses of high-resolution infrared (IR) and far-infrared (FIR) spectra, it is possible to predict possible FIR laser emissions of molecules. In the present work we have applied this method to the common isotopomer methanol, 12CH3 16OH, and obtained 14 proposed assignments for previously unassigned FIR laser lines. We also predict 15 possible new FIR laser emissions. For the first time, an assignment involving a four-level laser system with collisional population transfer to a slightly higher energy level is reported. © 1998 Academic Press.
Resumo:
The effect of the addition of ground ear corn with husks, wheat bran and saccharin, on the rate of 0, 8, 16 and 24% (dry weight of additive/wet weight of cut green grass), upon the chemical composition of both fodder and silage of Pennisetum purpureum Schum. cv. Guaçu was evaluated. A split-plot randomized block design was used. The plots were the additives and their levels and the sub-plots the material types (forage + additives and their silages). The grass was fertilized with 20 t/ha of green manure and 80, 160 and 160 kg/ha of P2O5, N and K2O, respectively. The material (chopped grass mixed with the levels of the additives) was ensiled in experimental silos (200 L plastic vessels). The dry matter percentages increased linearly as additive levels increased, being greater the effect of ground ear corn with husks. Wheat bran addition and saccharin increased the crude protein and soluble carbohydrates percentages while the ground ear corn with husks addition decreased them. Losses of dry matter soluble compounds (CP, ash and NFE) and a relative rise in the less soluble compounds (CF and organic matter) were observed.