810 resultados para Siliceous materials
Resumo:
Peer-reviewed
Resumo:
The process of coarsening of an ensemble of clusters is investigated for the case that elastic strains due to matrix - cluster interactions change the process qualitatively as compared with dependencies established theoretically first by Lifshitz and Slezov. Such a qualitatively different behavior occurs always when the energy of elastic deformation in cluster growth increases more rapidly than linear with the volume of a cluster. Analytic solutions, for limiting cases, as well as numerical solutions, for the general case of coarsening in an ensemble of pores with a given pore size distribution, are presented. Possible applications are discussed.
Resumo:
Based on experimental observations of modulated magnetic patterns in a Co0.5Ni0.205Ga0.295 alloy, we propose a model to describe a (purely) magnetic tweed and a magnetoelastic tweed. The former arises above the Curie (or Nel) temperature due to magnetic disorder. The latter results from compositional fluctuations coupling to strain and then to magnetism through the magnetoelastic interaction above the structural transition temperature. We discuss the origin of purely magnetic and magnetoelastic precursor modulations and their experimental thermodynamic signatures.
Resumo:
The characterization of rice husk ash, a deriving by-product of the burning of the rice husk during the rice processing is the object of this study. This by-product, for being rich in silica, can be an important raw material for the production of siliceous ceramics, such as thermal insulators and refractory. A combination of surface analysis, thermal analysis and microscopy analysis techniques was used for the characterization. The characterized by-product presented as main component the silica, under amorphous form, with a maximum content of alkalis around 1%, features that become it potentially interesting for the production of ceramic materials.
Resumo:
Pretreatment of lignocellulosic materials is essential for bioconversion because of the various physical and chemical barriers that greatly inhibit their susceptibility to bioprocesses such as hydrolysis and fermentation. The aim of this article is to review some of the most important pretreatment methods developed to date to enhance the conversion of lignocellulosics. Steam explosion, which precludes the treatment of biomass with high-pressure steam under optimal conditions, is presented as the pretreatment method of choice and its mode of action on lignocellulosics is discussed. The optimal pretreatment conditions for a given plant biomass are defined as those in which the best substrate for hydrolysis is obtained with the least amount of soluble sugars lost to side reactions such as dehydration. Therefore, pretreatment optimization results from a compromise between two opposite trends because hemicellulose recovery in acid hydrolysates can only be maximized at lower pretreatment severities, whereas the development of substrate accessibility requires more drastic pretreatment conditions in which sugar losses are inevitable. To account for this heterogeneity, the importance of several process-oriented parameters is discussed in detail, such as the pretreatment temperature, residence time into the steam reactor, use of an acid catalyst, susceptibility of the pretreated biomass to bioconversion, and process design.
Resumo:
In this article we review some of the basic aspects of rare earth spectroscopy applied to vitreous materials. The characteristics of the intra-atomic free ion and ligand field interactions, as well as the formalisms of the forced electric dipole and dynamic coupling mechanisms of 4f-4f intensities, are outlined. The contribution of the later mechanism to the 4f-4f intensities is critically discussed, a point that has been commonly overlooked in the literature of rare earth doped glasses. The observed correlation between the empirical intensity parameter W2 and the covalence of the ion first coordination shell is discussed accordingly to the theoretical predictions.
Resumo:
Hydrological disturbances, light availability and nutrients are the most relevant factors determining the structure of the biological communities in Mediterranean rivers. While some hydrological disturbances are able to induce catastrophic effects, which may cause a complete reset in physical and biological conditions, continued enrichment or changes in light availability are factors leading to the progressive shift in the communities of autotrophs and heterotrophs in the systems. Primary production in Mediterranean streams shows relevant seasonal changes which mainly follows the variations in light availability. In most forested streams, the algal community is shade-adapted. Nutrient enrichment (especially phosphorus) leads to marked increases in primary production, but this increase is not lineal and there is a saturation of algal biomass even in the most enriched systems. The heterotrophs (bacteria, fungi) are related to the pattern of DOC availability (which most depends on the seasonal discharge and leaf fall dynamics) and to the available substrata in the stream. It has been repeatedly observed that shorttime increases of extracellular enzyme activities are related to the accumulation of autochthonous (algal) and/or allochthonous (leaves) organic matter on the streambed during spring and summer, this being more remarkable in dry than in wetter years. Flow reduction favours detritus concentration in pools, and the subsequent increase in the density and biomass of the macroinvertebrate community. In Mediterranean streams collectors are accounting for the highest density and biomass, this being more remarkable in the least permanent systems, in accordance with the effect of floods on the organic matter availability. Nutrients, through the effect on the primary producers, also affect the trophic food web in the streams by favouring the predominance of grazers
Resumo:
This work proposes a method of visualizing the trend of research in the field of ceramic membranes from 1999 to 2006. The presented approach involves identifying problems encountered during research in the field of ceramic membranes. Patents from US patent database and articles from Science Direct(& by ELSEVIER was analyzed for this work. The identification of problems was achieved with software Knowledgist which focuses on the semantic nature of a sentence to generate series of subject action object structures. The identified problems are classified into major research issues. This classification was used for the visualization of the intensity of research. The image produced gives the relation between the number of patents, with time and the major research issues. The identification of the most cited papers which strongly influence the research of the previously identified major issues in the given field was also carried out. The relations between these papers are presented using the metaphor of social network. The final result of this work are two figures, a diagram showing the change in the studied problems a specified period of time and a figure showing the relations between the major papers and groups of the problems
Resumo:
In this work, we use the rule of mixtures to develop an equivalent material model in which the total strain energy density is split into the isotropic part related to the matrix component and the anisotropic energy contribution related to the fiber effects. For the isotropic energy part, we select the amended non-Gaussian strain energy density model, while the energy fiber effects are added by considering the equivalent anisotropic volumetric fraction contribution, as well as the isotropized representation form of the eight-chain energy model that accounts for the material anisotropic effects. Furthermore, our proposed material model uses a phenomenological non-monotonous softening function that predicts stress softening effects and has an energy term, derived from the pseudo-elasticity theory, that accounts for residual strain deformations. The model’s theoretical predictions are compared with experimental data collected from human vaginal tissues, mice skin, poly(glycolide-co-caprolactone) (PGC25 3-0) and polypropylene suture materials and tracheal and brain human tissues. In all cases examined here, our equivalent material model closely follows stress-softening and residual strain effects exhibited by experimental data
Resumo:
A thermodynamically consistent damage model for the simulation of progressive delamination under variable mode ratio is presented. The model is formulated in the context of the Damage Mechanics. The constitutive equation that results from the definition of the free energy as a function of a damage variable is used to model the initiation and propagation of delamination. A new delamination initiation criterion is developed to assure that the formulation can account for changes in the loading mode in a thermodynamically consistent way. The formulation proposed accounts for crack closure effets avoiding interfacial penetration of two adjacent layers aftercomplete decohesion. The model is implemented in a finite element formulation. The numerical predictions given by the model are compared with experimental results
Resumo:
[spa] El presente estudio se centra en la caracterización macroscópica y microscópica de las materias primas silíceas del yacimiento de la Dolina de l'Esquerda de les Alzines, un yacimiento del Pleistoceno superior ubicado en el macizo del Garraf. El objetivo ha sido establecer distintas variedades de sílex, mediante la descripción macroscópica y microscópica de los elementos del conjunto lítico, para disponer, por vez primera, de unas categorías definidas de los recursos abióticos silíceos disponibles y explotados durante la prehistoria en este macizo. Además, mediante el presente estudio se ha evaluado también la posible procedencia y el área captación de dichas materias. [eng]The present study focuses on the macroscopic and microscopic characterization of siliceous raw materials from the archeological site of Dolina de l'Esquerda de les Alzines, an Upper Pleistocene deposit located in the Garraf Massif. The aim of this study has been to establish different varieties of chert, by a precise description of the elements of the lithic assemblage, to provide for the first time a few categories defined from the siliceous abiotic resources available and exploited during Prehistory in the massif. Furthermore, through the present study we also assessed the possible origin and procurement area of such materials.
Resumo:
Existeixen diversos estudis que avaluen el consum energètic derivat del procés de producció deISF (Incremental Sheet Forming), principalment per materials metàl•lics. Per tant, l’objectiu d’aquest projecte ésdeterminar el consum energètic en la conformació de materials plàstics en aquest procés.S’estudiarà el consum energètic mesurant l’energia elèctrica necessària per al procés, utilitzantdiferents paràmetres i estratègies de fabricació, com poden ser diferents materialspolimèrics, trajectòries variades de conformat, diferents velocitats d’avanç i rotació i diferentsgeometries.Un cop analitzat el consum energètic derivat de la fabricació amb ISF es valorarà l’impacteambiental que provoca aquesta tecnologia
Resumo:
Acid drainage results from exposition of sulfides to the atmosphere. Arsenopyrite is a sulfide that releases arsenic (As) to the environment when oxidized. This work evaluated the As mobility in six sulfidic geomaterials from gold mining areas in Minas Gerais State, Brazil. Grained samples (<2 mm) were periodically leached with distilled water, during 70 days. Results suggested As sorption onto (hydr)oxides formed by oxidation of arsenopyrite. Low pH accelerated the acid generation, dissolving Fe oxihydroxides and releasing As. Presence of carbonates decreased oxidation rates and As release. On the other hand, lime added to a partially oxidized sample increased As mobilization.
Resumo:
Oral implantology is a common procedure in dentistry, especially for fully or partially edentulous patients. The implants must be placed in the best location from both the aesthetic and functional point of view. Because of this it is increasingly more frequent to resort to regeneration techniques that use substitutes of the bone itself, in order to be able to insert the implants in the most appropriate location. Material and Methodology: A review was performed on the literature from the last ten years based on the following search limitations: "graft materials', 'allograft', 'xenograft', 'autologous graft" and 'dentistry". Results: 241 works were obtained that after reading their respective summaries, they were reduced to 38, and 9 previous works were included in order to summarize the concepts. Discussion: Autologous grafts are the 'gold standard' of the bone regeneration. They have obvious advantages, but they also have drawbacks. This is why allogeneic and xenogeneic tissues are used. The former because of their clear similarity with the recipient's tissue and the latter due to their wide availability. Given that these grafts also have drawbacks, the industry has developed synthetic materials that have properties similar to those of human bone tissue. However, as of today, the ideal material to substitute human bone has not yet been found. In recent years the tendency has been to combine these synthetic materials with the patient's own bone, which is extracted during drilling in implant placement, with bone marrow aspiration, or with bone morphogenetic proteins. Thus the intention is to equip these substances with the osteogenic capacity. Conclusions: There is currently no ideal graft material, with the exception of those materials that come directly from the patient. We hope that in the coming years we will have products that will allow us to perform rehabilitations with better results and provide a better quality of life for our patients, especially those who have more complex situations to resolve, like the patients that are operated on for head and neck cancer
Resumo:
La natura és sàvia i, després d'anys d'evolució, ha seleccionat materials amb propietats insuperables. Alguns experts creuen que el 80% de les solucions que la ciència busca estan en els animals i les plantes. S'investiga per aconseguir avions inspirats en el vol del cigne, edificis que imitin la termoregulació dels cactus, banyadors basats en les escates dels taurons per reduir la fricció amb l'aigua i materials tan resistents com les teranyines.