803 resultados para Sielectric strength
Resumo:
Ultrafine full-vulcanized polybutadiene rubber (UFBR) in particle sizes of ca. 50-100 nm has been used for modifying mechanical and processing performances of polypropylene (PP), and PP-g-maleic anhydride (PP-MA) has been used as a compatibilizer for enhancing the interfacial adhesion between the two components. The results show that PP/UFBR possesses rheological behaviors such as highly branched PP when UFBR content in blends reaches 10 wt%, while in contrast, the much low content of UFBR combining small amount of PP-MA endows the material with rheological characteristics of high melt strength materials like highly branched PP.
Novel Method for Preparation of Polypropylene Blends with High Melt Strength by Reactive Compounding
Resumo:
Ultrafine full-vulcanized polybutadiene rubber(UFBR) with particle sizes of ca. 50-100 nm were used for modifying mechanical and processing performances of polypropylene(PP) with PP-g-maleic anhydride(PP-g-MA) as a compatibilizer for enhancing the interfacial adhesion between the two components. The morphology, dynamical rheology response and mechanical properties of the blends were characterized by means of SEM, rheometer and tensile test, respectively.
Resumo:
La2Zr2O7 (LZ) and La-2(Zr0.7Ce0.3)(2)O-7 (LZ7C3) as novel candidate materials for thermal barrier coatings (TBCs) were prepared by electron beam-physical vapor deposition (EB-PVD). The adhesive strength of the as-deposited LZ and LZ7C3 coatings were evaluated by transverse scratch test. Meanwhile, the factors affecting the critical load value were also investigated. The critical load value of LZ7C3 coating is larger than that of LZ coating, whereas both values of these two coatings are lower than that of the traditional coating material, i.e. 8 wt% yttria stabilized zirconia (8YSZ). The micro-cracks formed in the scratch channel can partially release the stress in the coating and then enhance the adhesive strength of the coating. The width of the scratch channel and the surface spallation after transverse scratch test are effective factors to evaluate the adhesive strength of LZ and LZ7C3 coatings.
Resumo:
A series of novel polyampholyte superabsorbent nanocomposites with excellent gel strength were synthesized by in situ solution polymerization in aqueous solution. Acrylic acid and acryloyloxyethyl trimethyl ammonium chloride (DAC) were employed as ionic monomers and montmorillonite (MMT) was used as inorganic component. The addition of cationic component could supply the positive charge in the network of nanocomposite and promote the formation of nanostructure of composites due to the interaction between DAC and clay platelets. The performance of polyampholyte nanocomposites were investigated and the result showed that the gel strength of nanocomposite hydrogel in distilled water and 0.9 wt% NaCl solution could reach 198.85 and 204.23 mJ/g, respectively, which were 13 times of the gel strength of matrix. The investigation of swelling behaviors showed that the nanocomposites had particular swelling behaviors of polyampholytes hydrogel in solution with different pH values and concentration of NaCl.
Resumo:
The solid-solution-particle reinforced W(Al)-Ni composites were successfully fabricated by using mechanical alloying (MA) and hot-pressing (HP) technique when the content of Ni is between 45 wt% and 55 wt%. Besides, samples of various original component ratio of Al50W50 to Ni have been fabricated, and the corresponding microcomponents and mechanical properties such as microhardness, ultimate tensile strength and elongation were characterized and discussed. The optimum ultimate tensile strength under the experiment conditions is 1868 MPa with elongation of 10.21 % and hardness of 6.62 GPa. X-ray diffraction (XRD), FE-SEM and energy dispersive analysis of X-rays (EDS) were given to analysis the components and morphology of the composite bulk specimens.
Resumo:
The effects of three triblock copolymers of poly [styrene-b-(ethylene-co-butylene)-b-styrene] (SEBS) of different molecular weight (MW) on the morphology, tensile strength and thermal behavior of isotactic polypropylene/syndiotactic polystyrene (iPP/sPS, 80/20) blend are investigated. Morphology observation shows that both the medium MW and the lower MW SEBS are more effective than the higher MW SEBS in compatibilizing the blends. Tensile tests revels both the medium and low MW compatibilizer lead to a significant improvement in tensile strength, while the higher MW compatibilizer is efficient in increasing the elongation at break of the blends. The localization of compatibilizers in the blends is observed by mean of SEM and the correlation between the distribution of the compatibilizers and mechanical properties of the blends is evaluated. The mechanical properties of the iPP/sPS blends depend on not only the interfacial activity of the compatibilizers but also the distribution of the compatibilizer in the blend. Addition of the compatibilizers to the blend causes a remarkable decrease in the magnitude of the crystallization peak of sPS at its usual T-c. Vicat softening points demonstrate that the heat resistance of iPP/sPS blend is much higher than that of the pure iPP.
Resumo:
Nanometer-scale elastic moduli and yield strengths of polycarbonate (PC) and polystyrene (PS) thin films were measured with atomic force microscopy (AFM) indentation measurements. By analysis of the AFM indentation force curves with the method by Oliver and Pharr, Young's moduli of PC and PS thin films could be obtained as 2.2 +/- 0.1 and 2.6 +/- 0.1 GPa, respectively, which agree well with the literature values. By fitting Johnson's conical spherical cavity model to the measured plastic zone sizes, we obtained yield strengths of 141.2 MPa for PC thin films and 178.7 MPa for PS thin films, which are similar to2 times the values expected from the literature. We propose that it is due to the AFM indentation being asymmetric, which was not accounted for in Johnson's model. A correction factor, epsilon, of similar to0.72 was introduced to rescale the plastic zone size, whereupon good agreement between theory and experiment was achieved.
Resumo:
The paper studies the morphology and mechanical properties of immiscible binary blends of the nylon 1010 and HIPS through the radiation crosslinking method. In this blend, the HIPS particles were the dispersed phases in the nylon 1010 matrix. With increasing of dose, the elastic modulus increased, However, the tensile strength. elongation at bleak and the energy of fracture increased to a maximum at a dose of 0.34 MGy, then reduced with the increasing of dose. SEM photographs show that the hole sizes are not changed obviously at low dose and at high dose, remnants that cannot be dissolved in formic acid and THF can be observed in the holes and on the surface. TEM photographs showed that radiation destroys the rubber phases in the polymer blend. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
The effect of particle size on impact strength of polymer blends with ductile fracture was studied. The results are in agreement with the experiments. (C) 1995 John Wiley & Sons, Inc.
Resumo:
Free-standing film of polyaniline with excellent mechanical and electrical properties has been successfully prepared by using the solution-casting method. The results show that its tensile strength, Young's modulus and elongation at break are about 87.9 MPa, 1563.9 MPa and 10.2%, respectively. It is essential that the soluble polyaniline should be appropriately treated in some suitable organic solvents before making a free-standing film. Films having lustrous, smooth surface, high density and good flexibili...
Resumo:
Wave breaking in the open ocean and coastal zones remains an intriguing yet incompletely understood process, with a strong observed association with wave groups. Recent numerical study of the evolution of fully nonlinear, two-dimensional deep water wave groups identified a robust threshold of a diagnostic growth-rate parameter that separated nonlinear wave groups that evolved to breaking from those that evolved with recurrence. This paper investigates whether these deep water wave-breaking results apply more generally, particularly in finite-water-depth conditions. For unforced nonlinear wave groups in intermediate water depths over a flat bottom, it was found that the upper bound of the diagnostic growth-rate threshold parameter established for deep water wave groups is also applicable in intermediate water depths, given by k(0) h greater than or equal to 2, where k(0) is the mean carrier wavenumber and h is the mean depth. For breaking onset over an idealized circular arc sandbar located on an otherwise flat, intermediate-depth (k(0) h greater than or equal to 2) environment, the deep water breaking diagnostic growth rate was found to be applicable provided that the height of the sandbar is less than one-quarter of the ambient mean water depth. Thus, for this range of intermediate-depth conditions, these two classes of bottom topography modify only marginally the diagnostic growth rate found for deep water waves. However, when intermediate-depth wave groups ( k(0) h greater than or equal to 2) shoal over a sandbar whose height exceeds one-half of the ambient water depth, the waves can steepen significantly without breaking. In such cases, the breaking threshold level and the maximum of the diagnostic growth rate increase systematically with the height of the sandbar. Also, the dimensions and position of the sandbar influenced the evolution and breaking threshold of wave groups. For sufficiently high sandbars, the effects of bottom topography can induce additional nonlinearity into the wave field geometry and associated dynamics that modifies the otherwise robust deep water breaking-threshold results.