968 resultados para Serino-protease NS3 HCV
Resumo:
BACKGROUND: Over the last 4 years ADAMTS-13 measurement underwent dramatic progress with newer and simpler methods. AIMS: Blind evaluation of newer methods for their performance characteristics. DESIGN: The literature was searched for new methods and the authors invited to join the evaluation. Participants were provided with a set of 60 coded frozen plasmas that were prepared centrally by dilutions of one ADAMTS-13-deficient plasma (arbitrarily set at 0%) into one normal-pooled plasma (set at 100%). There were six different test plasmas ranging from 100% to 0%. Each plasma was tested 'blind' 10 times by each method and results expressed as percentage vs. the local and the common standard provided by the organizer. RESULTS: There were eight functional and three antigen assays. Linearity of observed-vs.-expected ADAMTS-13 levels assessed as r2 ranged from 0.931 to 0.998. Between-run reproducibility expressed as the (mean) CV for repeated measurements was below 10% for three methods, 10-15% for five methods and up to 20% for the remaining three. F-values (analysis of variance) calculated to assess the capacity to distinguish between ADAMTS-13 levels (the higher the F-value, the better the capacity) ranged from 3965 to 137. Between-method variability (CV) amounted to 24.8% when calculated vs. the local and to 20.5% when calculated vs. the common standard. Comparative analysis showed that functional assays employing modified von Willebrand factor peptides as substrate for ADAMTS-13 offer the best performance characteristics. CONCLUSIONS: New assays for ADAMTS-13 have the potential to make the investigation/management of patients with thrombotic microangiopathies much easier than in the past.
Resumo:
Necrotising enterocolitis (NEC) causes significant morbidity and mortality in premature infants. The role of innate immunity in the pathogenesis of NEC remains unclear. Mannose-binding lectin (MBL) recognizes microorganisms and activates the complement system via MBL-associated serine protease-2 (MASP-2). The aim of this study was to investigate whether MBL and MASP-2 are associated with NEC. This observational case-control study included 32 infants with radiologically confirmed NEC and 64 controls. MBL and MASP-2 were measured in cord blood using ELISA. Multivariate logistic regression was performed. Of the 32 NEC cases (median gestational age, 30.5 wk), 13 (41%) were operated and 5 (16%) died. MASP-2 cord blood concentration ranged from undetectable (<10 ng/mL) to 277 ng/mL. Eighteen of 32 (56%) NEC cases had higher MASP-2 levels (> or =30 ng/mL) compared with 22 of 64 (34%) controls (univariate OR 2.46; 95% CI 1.03-5.85; p = 0.043). Higher cord blood MASP-2 levels were significantly associated with an increased risk of NEC in multivariate analysis (OR 3.00; 95% CI 1.17-7.93; p = 0.027). MBL levels were not associated with NEC (p = 0.64). In conclusion, infants later developing NEC had significantly higher MASP-2 cord blood levels compared with controls. Higher MASP-2 may favor complement-mediated inflammation and could thereby predispose to NEC.
Resumo:
BACKGROUND: Mannose-binding lectin (MBL) and MBL-associated serine protease-2 (MASP-2) are key components of the lectin pathway of complement activation. Their serum concentrations show a wide interindividual variability. This study investigated whether the concentration of MBL and MASP-2 is associated with prognosis in pediatric patients with cancer. METHODS: In this retrospective multicenter study, MBL and MASP-2 were measured by commercially available ELISA in frozen remnants of serum taken at diagnosis. Associations of overall survival (OS) and event-free survival (EFS) with MBL and MASP-2 were assessed by multivariate Cox regression accounting for prognostically relevant clinical variables. RESULTS: In the 372 patients studied, median serum concentration of MBL was 2,808 microg/L (range, 2-10,060) and 391 microg/L (46-2,771) for MASP-2. The estimated 4-year EFS was 0.60 (OS, 0.78). In the entire, heterogeneous sample, MBL and MASP-2 were not significantly associated with OS or EFS. In patients with hematologic malignancies, however, higher MASP-2 was associated with better EFS in a significant and clinically relevant way (hazard ratio per tenfold increase (HR), 0.22; 95% CI, 0.09-0.54; P = 0.001). This was due to patients with lymphoma (HR, 0.11; 95% CI, 0.03-0.47; P = 0.003), but less for those with acute leukemia (HR, 0.35; 95% CI, 0.11-1.15; P = 0.083). CONCLUSION: In this study, higher MASP-2 was associated with better EFS in pediatric patients with hematologic malignancies, especially lymphoma. Whether MASP-2 is an independent prognostic factor affecting risk stratification and anticancer therapy needs to be assessed in prospective, disease-specific studies.
Resumo:
Hepatitis C virus (HCV) clearance has been associated with reduced viral evolution in targeted cytotoxic T-lymphocyte (CTL) epitopes, suggesting that HCV clearers may mount CTL responses with a superior ability to recognize epitope variants and prevent viral immune escape. Here, 40 HCV-infected subjects were tested with 406 10-mer peptides covering the vast majority of the sequence diversity spanning a 197-residue region of the NS3 protein. HCV clearers mounted significantly broader CTL responses of higher functional avidity and with wider variant cross-recognition capacity than nonclearers. These observations have important implications for vaccine approaches that may need to induce high-avidity responses in vivo.
Resumo:
Advanced glycation end products (AGEs) may play a role in the pathogenesis of diabetic nephropathy, by modulating extracellular matrix turnover. AGEs are known to activate specific membrane receptors, including the receptor for AGE (RAGE). In the present study, we analyzed the various receptors for AGEs expressed by human mesangial cells and we studied the effects of glycated albumin and of carboxymethyl lysine on matrix protein and remodelling enzyme synthesis. Membrane RAGE expression was confirmed by FACS analysis. Microarray methods, RT-PCR, and Northern blot analysis were used to detect and confirm specific gene induction. Zymographic analysis and ELISA were used to measure the induction of tPA and PAI-1. We show herein that cultured human mesangial cells express AGE receptor type 1, type 2 and type 3 and RAGE. AGEs (200 microg/ml) induced at least a 2-fold increase in mRNA for 10 genes involved in ECM remodelling, including tPA, PAI-1 and TIMP-3. The increase in tPA synthesis was confirmed by fibrin zymography. The stimulation of PAI-1 synthesis was confirmed by ELISA. AGEs increased PAI-1 mRNA through a signalling pathway involving reactive oxygen species, the MAP kinases ERK-1/ERK-2 and the nuclear transcription factor NF-kappaB, but not AP-1. Carboxymethyl lysine (CML, 5 microM), which is a RAGE ligand, also stimulated PAI-1 synthesis by mesangial cells. In addition, a blocking anti-RAGE antibody partially inhibited the AGE-stimulated gene expression and decreased the PAI-1 accumulation induced by AGEs and by CML. Inhibition of AGE receptors or neutralization of the protease inhibitors TIMP-3 and PAI-1 could represent an important new therapeutic strategy for diabetic nephropathy.
Resumo:
The efficacy of specifically targeted anti-viral therapy for hepatitis C virus (HCV) (STAT-C), including HCV protease and polymerase inhibitors, is limited by the presence of drug-specific viral resistance mutations within the targeted proteins. Genetic diversity within these viral proteins also evolves under selective pressures provided by host human leukocyte antigen (HLA)-restricted immune responses, which may therefore influence STAT-C treatment response. Here, the prevalence of drug resistance mutations relevant to 27 developmental STAT-C drugs, and the potential for drug and immune selective pressures to intersect at sites along the HCV genome, is explored. HCV nonstructural (NS) 3 protease or NS5B polymerase sequences and HLA assignment were obtained from study populations from Australia, Switzerland, and the United Kingdom. Four hundred five treatment-naïve individuals with chronic HCV infection were considered (259 genotype 1, 146 genotype 3), of which 38.5% were coinfected with human immunodeficiency virus (HIV). We identified preexisting STAT-C drug resistance mutations in sequences from this large cohort. The frequency of the variations varied according to individual STAT-C drug and HCV genotype/subtype. Of individuals infected with subtype 1a, 21.5% exhibited genetic variation at a known drug resistance site. Furthermore, we identified areas in HCV protease and polymerase that are under both potential HLA-driven pressure and therapy selection and identified six HLA-associated polymorphisms (P
Resumo:
BACKGROUND: HCV coinfection remains a major cause of morbidity and mortality among HIV-infected individuals and its incidence has increased dramatically in HIV-infected men who have sex with men(MSM). METHODS: Hepatitis C virus (HCV) coinfection in the Swiss HIV Cohort Study(SHCS) was studied by combining clinical data with HIV-1 pol-sequences from the SHCS Drug Resistance Database(DRDB). We inferred maximum-likelihood phylogenetic trees, determined Swiss HIV-transmission pairs as monophyletic patient pairs, and then considered the distribution of HCV on those pairs. RESULTS: Among the 9748 patients in the SHCS-DRDB with known HCV status, 2768(28%) were HCV-positive. Focusing on subtype B(7644 patients), we identified 1555 potential HIV-1 transmission pairs. There, we found that, even after controlling for transmission group, calendar year, age and sex, the odds for an HCV coinfection were increased by an odds ratio (OR) of 3.2 [95% confidence interval (CI) 2.2, 4.7) if a patient clustered with another HCV-positive case. This strong association persisted if transmission groups of intravenous drug users (IDUs), MSMs and heterosexuals (HETs) were considered separately(in all cases OR >2). Finally we found that HCV incidence was increased by a hazard ratio of 2.1 (1.1, 3.8) for individuals paired with an HCV-positive partner. CONCLUSIONS: Patients whose HIV virus is closely related to the HIV virus of HIV/HCV-coinfected patients have a higher risk for carrying or acquiring HCV themselves. This indicates the occurrence of domestic and sexual HCV transmission and allows the identification of patients with a high HCV-infection risk.
Resumo:
Background. It is unknown whether serum concentrations of mannan-binding lectin (MBL) and MBL-associated serine protease-2 (MASP-2) influence the risk of adverse events (AEs) in children with cancer presenting with fever in neutropenia (FN). Methods. Pediatric patients with cancer presenting with FN after non-myeloablative chemotherapy were observed in a prospective multicenter study. Mannan-binding lectin and MASP-2 were measured using commercially available enzyme-linked immunosorbent assay in serum taken at cancer diagnosis. Multiple FN episodes per patient were allowed. Associations of MBL and MASP-2 with AE in general, with bacteremia, and with serious medical complications (SMC) during FN were analyzed using mixed logistic regression. Results. Of 278 FN episodes, AE was reported in 84 (30%), bacteremia was reported in 42 (15%), and SMC was reported in 16 (5.8%). Median MBL was 2152 ng/mL (range, 7–10 060). It was very low (<100) in 11 (9%) patients, low (100–999) in 36 (29%) patients, and normal (�1000) in 79 (63%) patients. Median MASP-2 was 410 ng/mL (range, 68–2771). It was low (<200) in 18 (14%) patients and normal in the remaining 108 (86%) patients. Mannan-binding lectin and MASP-2 were not significantly associated with AE or bacteremia. Normal versus low MBL was independently associated with a significantly higher risk of SMC (multivariate odds ratio, 12.8; 95% confidence interval, 1.01–163; P = .050). Conclusions. Mannan-binding lectin and MASP-2 serum concentrations were not found to predict the risk to develop AEs or bacteremia during FN. Normal MBL was associated with an increased risk of SMC during FN. This finding, in line with earlier studies, does not support the concept of MBL supplementation in MBL-deficient children with cancer presenting with FN.
Resumo:
The serine protease CAP1/Prss8 is crucial for skin barrier function, lung alveolar fluid clearance and has been unveiled as diagnostic marker for specific cancer types. Here, we show that a constitutive knockout of CAP1/Prss8 leads to embryonic lethality. These embryos presented no specific defects, but it is during this period, and in particular at E13.5, that wildtype placentas show an increased expression of CAP1/Prss8, thus suggesting a placental defect in the knockout situation. The placentas of knockout embryos exhibited significantly reduced vascular development and incomplete cellular maturation. In contrary, epiblast-specific deletion of CAP1/Prss8 allowed development until birth. These CAP1/Prss8-deficient newborns presented abnormal epidermis, and died soon after birth due to impaired skin function. We thus conclude that a late placental insufficiency might be the primary cause of embryonic lethality in CAP1/Prss8 knockouts. This study highlights a novel and crucial role for CAP1/Prss8 in placental development and function.
Resumo:
Ubiquitylation plays an important role in the control of Na⁺ homeostasis by the kidney. It is well established that the epithelial Na⁺ channel ENaC is regulated by the ubiquitin-protein ligase NEDD4-2, limiting ENaC cell surface expression and activity. Ubiquitylation can be reversed by the action of deubiquitylating enzymes (DUBs). One such DUB, USP2-45, was identified previously as an aldosterone-induced protein in the kidney and is also a circadian output gene. In heterologous expression systems, USP2-45 binds to ENaC, deubiquitylates it, and enhances channel density and activity at the cell surface. Because the role of USP2-45 in renal Na⁺ transport had not been studied in vivo, we investigated here the effect of Usp2 gene inactivation in this process. We demonstrate first that USP2-45 protein has a rhythmic expression with a peak at ZT12. Usp2-KO mice did not show any differences from wild-type littermates with respect to the diurnal control of Na⁺ or K⁺ urinary excretion and plasma levels either on a standard diet or after acute and chronic changes to low- and high-Na⁺ diets, respectively. Moreover, they had similar aldosterone levels on either a low- or high-Na⁺ diet. Blood pressure measurements using telemetry did not reveal variations compared with control mice. Usp2-KO mice did not display alterations in expression of genes involved in sodium homeostasis or the ubiquitin system, as evidenced by transcriptome analysis in the kidney. Our data suggest that USP2 does not play a primary role in the control of Na⁺ balance or blood pressure.
Resumo:
Avibacterium paragallinarum, the etiological agent of infectious coryza in chicken, was found to encode a bivalent serine-protease - RTX-porin toxin named AvxA. This toxin is encoded on a classical RTX operon structure with the activator gene avxC, the structural serin-protease-RTX toxin gene avxA, and the genes for a proper type I secretion system avxBD. AvxA is activated by the product of the avxC gene, secreted by the avxBD specified type I secretion system and proteolytically processed leaving a 95 kDa RTX moiety that is found in culture supernatants of A. paragallinarum serovars A, B and C. The RTX moiety of AvxA (AvxA-RTX) is cytotoxic against the avian macrophage like cell line HD11 but not against bovine macrophage cell line BoMac. Purified IgG from hyper-immune rabbit anti-AvxA-RTX serum made by immunization with recombinant AvxA-RTX from a serotype A strain fully neutralizes the cytotoxic activity of recombinant active AvxA-RTX and of A. paragallinarum serotypes A, B and C. This indicates that AvxA is a common major virulence attribute of all A. paragallinarum serotypes.
Resumo:
Background: We investigated changes in biomarkers of liver disease in HIV–HCV-coinfected individuals during successful combination antiretroviral therapy (cART) compared to changes in biomarker levels during untreated HIV infection and to HIV-monoinfected individuals. Methods: Non-invasive biomarkers of liver disease (hyaluronic acid [HYA], aspartate aminotransferase-to-platelet ratio index [APRI], Fibrosis-4 [FIB-4] index and cytokeratin-18 [CK-18]) were correlated with liver histology in 49 HIV–HCV-coinfected patients. Changes in biomarkers over time were then assessed longitudinally in HIV–HCV-coinfected patients during successful cART (n=58), during untreated HIV-infection (n=59), and in HIV-monoinfected individuals (n=17). The median follow-up time was 3.4 years on cART. All analyses were conducted before starting HCV treatment. Results: Non-invasive biomarkers of liver disease correlated significantly with the histological METAVIR stage (P<0.002 for all comparisons). The mean ±sd area under the receiver operating characteristic (AUROC) curve values for advanced fibrosis (≥F3 METAVIR) for HYA, APRI, FIB-4 and CK-18 were 0.86 ±0.05, 0.84 ±0.08, 0.80 ±0.09 and 0.81 ±0.07, respectively. HYA, APRI and CK-18 levels were higher in HIV–HCV-coinfected compared to HIV-monoinfected patients (P<0.01). In the first year on cART, APRI and FIB-4 scores decreased (-35% and -33%, respectively; P=0.1), mainly due to the reversion of HIV-induced thrombocytopaenia, whereas HYA and CK-18 levels remained unchanged. During long-term cART, there were only small changes (<5%) in median biomarker levels. Median biomarker levels changed <3% during untreated HIV-infection. Overall, 3 patients died from end-stage liver disease, and 10 from other causes. Conclusions: Biomarkers of liver disease highly correlated with fibrosis in HIV–HCV-coinfected individuals and did not change significantly during successful cART. These findings suggest a slower than expected liver disease progression in many HIV–HCV-coinfected individuals, at least during successful cART.
Resumo:
Bacillus anthracis, an organism ubiquitous in the soil and the causative agent of anthrax, utilizes multiple mechanisms to regulate secreted factors; one example is the activity of secreted proteases. One of the most abundant proteins in the culture supernates of B. anthracis is the Immune Inhibitor A1 (InhA1) protease. Here, I demonstrate that InhA1 modulates the abundance of approximately half of the proteins secreted into the culture supernates, including substrates that are known to contribute to the ability of the organism to cause virulence. For example, InhA1 cleaves the anthrax toxin proteins, PA, LF, and EF. InhA1 also targets a number of additional proteases, including Npr599, contributing to a complex proteolytic regulatory cascade with far-reaching affects on the secretome. Using an intra-tracheal mouse model of infection, I found that an inhA-null strain is attenuated in relation to the parent strain. The data indicate that reduced virulence of the inhA mutant strain may be the result of toxin protein deregulation, decreased association with macrophages, and/or the inability to degrade host antimicrobial peptides. Given the significant modulation of the secretome by InhA1, it is likely that expression of the protease is tightly regulated. To test this I examined inhA1 transcript and protein levels in the parent and various isogenic mutant strains and found that InhA1 expression is regulated by several mechanisms. First, the steady state levels of inhA1 transcript are controlled by the regulatory protein SinR, which inhibits inhA1 expression. Second, InhA1 abundance is inversely proportional to the SinR-regulated protease camelysin, indicating the post-transcriptional regulation of InhA1 by camelysin. Third, InhA1 activity is dependent on a conserved zinc binding motif, suggesting that zinc availability regulates InhA1 activity. The convergence of these regulatory mechanisms signifies the importance of tight regulation of InhA1 activity, activity that substantially affects how B. anthracis interacts with its environment.
Resumo:
Cells use molecular chaperones and proteases to implement the essential quality control mechanism of proteins. The DegP (HtrA) protein, essential for the survival of Escherichia coli cells at elevated temperatures with homologues found in almost all organisms uniquely has both functions. Here we report a mechanism for DegP to activate both functions via formation of large cage-like 12- and 24-mers after binding to substrate proteins. Cryo-electron microscopic and biochemical studies revealed that both oligomers are consistently assembled by blocks of DegP trimers, via pairwise PDZ1-PDZ2 interactions between neighboring trimers. Such interactions simultaneously eliminate the inhibitory effects of the PDZ2 domain. Additionally, both DegP oligomers were also observed in extracts of E. coli cells, strongly implicating their physiological importance.