885 resultados para Sequestro de carbono


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The monolithic glassy carbon is a carbonaceous material, isotropic, non graphitizable obtained by means of carbonization of resins up to 1000 °C. The good physicochemical properties make this material applied in several areas such as aerospace, medicine, electronics, chemistry, among others. It has generally been processed from the use of phenolic and furfuryl alcohol resins. These resins have high crosslink density and high fixed carbon content and are therefore widely applied in aerospace. The combination phenol / furfuryl alcohol resins search for obtaining the most suitable process for the glass-like carbon processing with phenolic resins currently available and of lower cost and easier to synthesize than the furfuryl alcohol resin. The main objective of this work is to obtain a phenol-furfuryl resin with high fixed carbon content combined with low porosity of the material. Different synthesis routes have been adopted along with thermal analysis techniques, FTIR and image analysis. The resin obtained through partial synthesis process presented the characteristics sought in this work

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the increasing demand for electricity, the retraining of transmission lines is necessary despite environmental restrictions and crossings in densely populated areas to build new transmission and distribution lines. Solution is reuse the existent cables, replacing the old conductor cables for new cables with higher capacity power transmission, and control of sag installed. The increasing demand for electrical power has increased the electric current on the wires and therefore, it must bear out temperatures of 150°C or more, without the risk of the increasing sag beyond the established limits. In the case of long crossings or densely populated areas, sag is due to high weight of the cable on clearance. The cable type determines the weight, sag, height and the towers dimensions, which are the items that most influence the investment of the transmission line. Hence, to reduce both cost of investment and maintenance of the line, the use of a lighter cable can reduce both number and the height of the towers, with financial return on short and long term. Therefore, in order to increase the amount of transmitted energy and reduce the number of built towers and sag, is recommended in the current work substitute the current core material (steel or aluminium) for alternatives alloys or new materials, in this case a composite, which has low density, elevated stiffness (elasticity module), thus apply the pultruded carbon fiber with epoxy resin as matrix systems and perform the study of the kinetics of degradation by thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC), according to their respective standards

Relevância:

20.00% 20.00%

Publicador:

Resumo:

After confirming the high specific mechanical properties of composite materials by scientific studies conducted over the last decades, one of the challenges of this new class of materials is the ability to achieve mass production at a more affordable cost, which has become indispensable. The Resin Transfer Molding (RTM) is an excellent method for manufacturing composite materials. Despite being a process widely used by international companies in the production of high performance structural composites, only a short time the national aviation industry has shown interest in implementing this type of processing to more complex structures and greater structural responsibility. In aeronautical projects, the reproducibility and the relative low cost of this process, several studies have been performed in Brazil for learning and perfecting this technique. This process is suitable for producing polymer components both simple as complex geometry, and allows to achieve consistent thickness, with high quality finish and without limiting range. Polymeric composite components for the high mechanical stress applications such as aircraft structures, satellites, etc., require a strict control of volume fractions of the composite constituents, beyond the knowledge of their mechanical and thermal properties. Therefore, in this experimental work degree study on the mechanical, thermal and of porosity composites processed by RTM processed characterization was performed. This characterization was performed targeting a possible aerospace application of this composite material. For the production of composites, process equipment (RTM RTM injector Radius 2100cc) was used. The processed carbono/epoxy composites were characterized via flexure tests mechanically and thermally analysis via DMA, DSC and TGA. To determine the volume fraction of fibers, the composite samples were analyzed via matrix digestion (ASTM D3171) ... (Complete abstract click electronic access below)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work performs a comparative study of fatigue life of riveted lap joints involving classes of drilling which adjustment is made with interference or clearance. For this study, representative specimens of this joints were manufactured with four rivets distributed in two rows. In this context, are presented the test matrix, the methodology employed in performing of the tests, the used mathematical modeling, and that methods that are the basis for the latter are described through the theoretical foundation. Next, are present the results obtained in fatigue tests and images of the region of failure of the specimens. Finally, are present some comments and conclusions related to the results obtained

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Along the Earth globe we can find many types of psychoactive plants. Among them is the Ipomoea violacea, popularly known as Morning Glory. There are ergotalkaloids producer associated-fungus in its leaves and seeds. One of these alkaloids that can be found is the ergine (or LSA), a homologous substance of the lysergic acid diethylamide (LSD). There are many discussions around the world about the inclusion of LSA in the list of controlled substances. In Brazil, this was recently prohibited. One of the most important point of view in the study of isotopic composition of 13C and 15N of this plant is the fact that there is a total alkaloid variation in function of its geographic origin like was verified in 1960’s, besides to aggregate knowledge about it. This work was made to verify if the isotopic ratio can be used as a tool in tracing this illegal Brazilian plant. We could conclude that this plant presents a C3 photosynthetic pathway, its parts has different isotopic carbon and nitrogen composition and that stable isotope analysis can be successfully used as a tool to detect its geographic origin

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hybrid composites combining metal plates and laminates with continuous fiber reinforced polymer, called fiber-metal (CHMF), have been particularly attractive for aerospace applications, due mainly to their high mechanical strength and stiffness associated with low density. These laminates (CHMF) consist of a sandwich structure consisting of layers of polymer composites and metal plates, stacked alternately. This setting allows you to combine the best mechanical performance of polymer composites reinforced with long fibers, to the high toughness of metals. Environmental effects should always be considered in the design of structural components, because these materials in applications are submitted to the effects of moisture in the atmosphere, the large cyclical variations of temperature around 82 ° C to -56 ° C, and high effort mechanical. The specimens of fibermetal composite were prepared at EMBRAER with titanium plates and laminates of carbon fiber/epoxy resin. This study aims to evaluate the effect of different environmental conditions (water immersion, hygrothermal chamber and thermal shock) of laminate hybrid titanium/carbon fiber/epoxy resin. The effects of conditioning were evaluated by interlaminar shear tests - ILSS, tensile, and vibration free

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aiming to reduce the cost of electrocatalysts and a greater resistance to CO poisoning this work was to study the adsorption and oxidation of carbon monoxide on ordered intermetallic phases AuIn, AuSb2, AuSn, PdSb and PdSn using voltammetric techniques in alkaline electrolyte solution. The results suggest that the AuSn and PdSn intermetallics has some form of resistance to CO poisoning. It is assumed that this behavior is a result of electronic effect and the effect of the third body has been achieved by adding a second metal to Au and Pd. However, further studies should be conducted to confirm this hypothesis as to test these materials as electrocatalysts in the reaction of oxidation of fuels

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Air pollution is an environmental issue worldwide and frequently cause negative effects on population health and ecosystems on cities. The relationship between climate and atmospheric pollution can be used as a surrogate to the intensity of air pollution. The present and quantity of some gases can be used as indicators to air quality: particulate matter (PM), sulfur dioxide (SO2), carbon monoxide (CO), ozone (O3), and nitrogen dioxide (NO2). Among those gases, CO has its major source within the cities, where automobiles are the main emitter. But measure pollutant concentration are challenging, sometimes because the lack of good equipments due to high costs and of the large variability of models that varies in precision, way of measure and distribution of sellers. Modeling are useful when there are an intend to evaluate air pollution, its sources and evaluate scenarios. This work aims to use CAL3QHCR model developed by the U.S Environmental Protection Agency (EPA) to generate predictive surfaces of CO concentration distribution on a site within Campinas city, located in São Paulo state, Brazil. CAL3QHCR model use data urban automobile circulation to generate spatial results for CO distribution. We observed that the pollution concentration was lower on our modeling than the concentrations measured by Companhia Ambiental do Estado de São Paulo (CETESB), the main environmental company on the São Paulo state. Also the correlation between average estimates of our model and the measure by CETESB was weak, indicating that the model used on this study need to be or better parameterized, or the scale we measured of CO emissions need to be rescaled. Although the model failed to correlate to CETESB data, maybe one that explore the estimated emissions distributed within the sites to understand spatial distributions of CO on the regions. Also, the generated information can also be used to other studies, and come to be useful to explain heat island

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, plasma immersion ion implantation (PIII) treatments of carbon fibers (CFs) were performed in order to induce modifications of chemical and physical properties of the CF surface aimed to improve the performance of thermoplastic composite. The samples to be treated were immersed in nitrogen or air glow discharge plasma and pulsed at −3.0 kV for 2.0, 5.0, 10.0, and 15.0 min. After PIII processing, the specimens were characterized by atomic force microscopy (AFM), scanning electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). After CFs treatments, the CF/Polypropylene (PP) composites were produced by hot pressing method. Surface morphology of as-received CFs exhibited some scratches aligned along the fibers due to the fiber manufacturing process. After both treatments, these features became deeper, and also, a number of small particles nonuniformly distributed on the fiber surface can be observed. These particles are product of CF surface sputtering during the PIII treatment, which removes the epoxy layer that covers as-received samples. AFM analyses of CF samples treated with nitrogen depicted a large increase of the surface roughness (Rrms value approximately six times higher than that of the untreated sample). The increase of the roughness was also observed for samples treated by air PIII. Raman spectra of all samples presented the characteristic D- and G-bands at approximately 1355 and 1582 cm−1, respectively. Analysis of the surface chemical composition provided by the XPS showed that nitrogen and oxygen were incorporated onto the surface. The polar radicals formed on the surface lead to increasing of the CF surface energy. Both the modification of surface roughness and the surface oxidation contributed for the enhancement of CF adhesion to the polymeric matrix. These features were confirmed ... (Complete abstract click electronic access below)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nanostructured materials over the last decade have been increasing the variety of studies and research applications in many industries. From the understanding and manipulation of nanoscale is possible to obtain high-performance materials. One method, which has been very effective in obtaining of nanostructured composites, is the electrospinning, a technique that uses electrostatic forces to produce fibers from a polymer solution. By understanding and controlling of process conditions, such as solution viscosity, working distance, the velocity of the collector, applied voltage and others conditions, it is possible to obtain fibers in many different morphologies. This work aims to obtain nanostructured composites from polysulfone (PSU) a thermoplastic polymer with high oxidation resistance and good mechanical strength at high temperatures and carbon nanotubes (CNTs) that are excellent reinforcements for polymer materials, their mechanical resistance is greater than that of all known materials; using the electrospinning process via polymer solution. Were used polysulfone solutions, n,n-ndimetil acetamide (PSU / DMAc) and this same solution added of CNTs in order to obtain the nanofibers. In both cases were analyzed the effectiveness of the process from the analysis of fiber diameters, rheological behavior and infrared spectroscopy. The results obtained confirmed the efficiency of the electrospinning process to obtain polymeric fibers

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This graduation work done study of polyamide 6.6/composite carbon fibres, since its processing, characterization of the main properties. Besides the influence of temperature, UV radiation, salt spray and moisture on the mechanical and viscoelastic behavior. To achieve this goal, the first composite was processed from the heat compression molding using known variables of the process and using the empirical method to find the best value for other parameters. The method processing molding was chosen because it common in composites processing in order to evaluate the influence of crystallinity of the properties that influence the mechanical and viscoelastic behavior laminates. From the obtained laminate specimens were evaluated in weathering, such as: in hygrothermal chamber, UV, salt spray and thermal shock. In another step, the effect produced by these constraints were evaluated by optical microscopy, ultrasound, dynamic mechanical analysis and vibration tests. This project was conducted at the Department of Technology and Materials of UNESP in Guaratingueta, where all the equipment and techniques for the implementation of this project met available. After the tests proved the applicability of the composite polyamide 6.6/carbon fibers in aeronautical applications with resistance the main climatic influences

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Because the high consumption of welded pipe for exploration and conduction oil and gas, optimization of manufacturing processes is necessary to obtain better productivity, efficiency and cost reduction. The objective of this study is to analyze the forms of heat transfer during the welding of pipes using longitudinal submerged arc process them to propose a model for the temperature distribution in the welded region. For this analysis are addressed as the heat transfer modes operate in the specified welding process and the necessary considerations for the mathematical model were obtained. The calculations were performed and the simulations needed to obtain the temperature distribution in the tube were carried out. Therefore, the practice was satisfactory and the results showed a range of temperatures along the pipe for a particular model and the future suggestions for improvement of this work

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Odontologia Restauradora - ICT