923 resultados para Search Engine Optimization Methods
Resumo:
Distribution networks paradigm is changing currently requiring improved methodologies and tools for network analysis and planning. A relevant issue is analyzing the impact of the Distributed Generation penetration in passive networks considering different operation scenarios. Studying DG optimal siting and sizing the planner can identify the network behavior in presence of DG. Many approaches for the optimal DG allocation problem successfully used multi-objective optimization techniques. So this paper contributes to the fundamental stage of multi-objective optimization of finding the Pareto optimal solutions set. It is proposed the application of a Multi-objective Tabu Search and it was verified a better performance comparing to the NSGA-II method. © 2009 IEEE.
Resumo:
The problem of assigning cells to switches in a cellular mobile network is an NP-hard optimization problem. So, real size mobile networks could not be solved by using exact methods. The alternative is the use of the heuristic methods, because they allow us to find a good quality solution in a quite satisfactory computational time. This paper proposes a Beam Search method to solve the problem of assignment cell in cellular mobile networks. Some modifications in this algorithm are also presented, which allows its parallel application. Computational results obtained from several tests confirm the effectiveness of this approach to provide good solutions for medium- and large-sized cellular mobile network.
Resumo:
This work develops two approaches based on the fuzzy set theory to solve a class of fuzzy mathematical optimization problems with uncertainties in the objective function and in the set of constraints. The first approach is an adaptation of an iterative method that obtains cut levels and later maximizes the membership function of fuzzy decision making using the bound search method. The second one is a metaheuristic approach that adapts a standard genetic algorithm to use fuzzy numbers. Both approaches use a decision criterion called satisfaction level that reaches the best solution in the uncertain environment. Selected examples from the literature are presented to compare and to validate the efficiency of the methods addressed, emphasizing the fuzzy optimization problem in some import-export companies in the south of Spain. © 2012 Brazilian Operations Research Society.
Resumo:
In this paper we report on a search for short-duration gravitational wave bursts in the frequency range 64 Hz-1792 Hz associated with gamma-ray bursts (GRBs), using data from GEO 600 and one of the LIGO or Virgo detectors. We introduce the method of a linear search grid to analyze GRB events with large sky localization uncertainties, for example the localizations provided by the Fermi Gamma-ray Burst Monitor (GBM). Coherent searches for gravitational waves (GWs) can be computationally intensive when the GRB sky position is not well localized, due to the corrections required for the difference in arrival time between detectors. Using a linear search grid we are able to reduce the computational cost of the analysis by a factor of O(10) for GBM events. Furthermore, we demonstrate that our analysis pipeline can improve upon the sky localization of GRBs detected by the GBM, if a high-frequency GW signal is observed in coincidence. We use the method of the linear grid in a search for GWs associated with 129 GRBs observed satellite-based gamma-ray experiments between 2006 and 2011. The GRBs in our sample had not been previously analyzed for GW counterparts. A fraction of our GRB events are analyzed using data from GEO 600 while the detector was using squeezed-light states to improve its sensitivity; this is the first search for GWs using data from a squeezed-light interferometric observatory. We find no evidence for GW signals, either with any individual GRB in this sample or with the population as a whole. For each GRB we place lower bounds on the distance to the progenitor, under an assumption of a fixed GW emission energy of 10(-2)M circle dot c(2), with a median exclusion distance of 0.8 Mpc for emission at 500 Hz and 0.3 Mpc at 1 kHz. The reduced computational cost associated with a linear search grid will enable rapid searches for GWs associated with Fermi GBM events once the advanced LIGO and Virgo detectors begin operation.
Resumo:
Since the beginning, some pattern recognition techniques have faced the problem of high computational burden for dataset learning. Among the most widely used techniques, we may highlight Support Vector Machines (SVM), which have obtained very promising results for data classification. However, this classifier requires an expensive training phase, which is dominated by a parameter optimization that aims to make SVM less prone to errors over the training set. In this paper, we model the problem of finding such parameters as a metaheuristic-based optimization task, which is performed through Harmony Search (HS) and some of its variants. The experimental results have showen the robustness of HS-based approaches for such task in comparison against with an exhaustive (grid) search, and also a Particle Swarm Optimization-based implementation.
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Support Vector Machines (SVMs) have achieved very good performance on different learning problems. However, the success of SVMs depends on the adequate choice of the values of a number of parameters (e.g., the kernel and regularization parameters). In the current work, we propose the combination of meta-learning and search algorithms to deal with the problem of SVM parameter selection. In this combination, given a new problem to be solved, meta-learning is employed to recommend SVM parameter values based on parameter configurations that have been successfully adopted in previous similar problems. The parameter values returned by meta-learning are then used as initial search points by a search technique, which will further explore the parameter space. In this proposal, we envisioned that the initial solutions provided by meta-learning are located in good regions of the search space (i.e. they are closer to optimum solutions). Hence, the search algorithm would need to evaluate a lower number of candidate solutions when looking for an adequate solution. In this work, we investigate the combination of meta-learning with two search algorithms: Particle Swarm Optimization and Tabu Search. The implemented hybrid algorithms were used to select the values of two SVM parameters in the regression domain. These combinations were compared with the use of the search algorithms without meta-learning. The experimental results on a set of 40 regression problems showed that, on average, the proposed hybrid methods obtained lower error rates when compared to their components applied in isolation.
Resumo:
Solution of structural reliability problems by the First Order method require optimization algorithms to find the smallest distance between a limit state function and the origin of standard Gaussian space. The Hassofer-Lind-Rackwitz-Fiessler (HLRF) algorithm, developed specifically for this purpose, has been shown to be efficient but not robust, as it fails to converge for a significant number of problems. On the other hand, recent developments in general (augmented Lagrangian) optimization techniques have not been tested in aplication to structural reliability problems. In the present article, three new optimization algorithms for structural reliability analysis are presented. One algorithm is based on the HLRF, but uses a new differentiable merit function with Wolfe conditions to select step length in linear search. It is shown in the article that, under certain assumptions, the proposed algorithm generates a sequence that converges to the local minimizer of the problem. Two new augmented Lagrangian methods are also presented, which use quadratic penalties to solve nonlinear problems with equality constraints. Performance and robustness of the new algorithms is compared to the classic augmented Lagrangian method, to HLRF and to the improved HLRF (iHLRF) algorithms, in the solution of 25 benchmark problems from the literature. The new proposed HLRF algorithm is shown to be more robust than HLRF or iHLRF, and as efficient as the iHLRF algorithm. The two augmented Lagrangian methods proposed herein are shown to be more robust and more efficient than the classical augmented Lagrangian method.
Resumo:
In a large number of problems the high dimensionality of the search space, the vast number of variables and the economical constrains limit the ability of classical techniques to reach the optimum of a function, known or unknown. In this thesis we investigate the possibility to combine approaches from advanced statistics and optimization algorithms in such a way to better explore the combinatorial search space and to increase the performance of the approaches. To this purpose we propose two methods: (i) Model Based Ant Colony Design and (ii) Naïve Bayes Ant Colony Optimization. We test the performance of the two proposed solutions on a simulation study and we apply the novel techniques on an appplication in the field of Enzyme Engineering and Design.
Resumo:
DI Diesel engine are widely used both for industrial and automotive applications due to their durability and fuel economy. Nonetheless, increasing environmental concerns force that type of engine to comply with increasingly demanding emission limits, so that, it has become mandatory to develop a robust design methodology of the DI Diesel combustion system focused on reduction of soot and NOx simultaneously while maintaining a reasonable fuel economy. In recent years, genetic algorithms and CFD three-dimensional combustion simulations have been successfully applied to that kind of problem. However, combining GAs optimization with actual CFD three-dimensional combustion simulations can be too onerous since a large number of calculations is usually needed for the genetic algorithm to converge, resulting in a high computational cost and, thus, limiting the suitability of this method for industrial processes. In order to make the optimization process less time-consuming, CFD simulations can be more conveniently used to generate a training set for the learning process of an artificial neural network which, once correctly trained, can be used to forecast the engine outputs as a function of the design parameters during a GA optimization performing a so-called virtual optimization. In the current work, a numerical methodology for the multi-objective virtual optimization of the combustion of an automotive DI Diesel engine, which relies on artificial neural networks and genetic algorithms, was developed.
Resumo:
This doctorate was funded by the Regione Emilia Romagna, within a Spinner PhD project coordinated by the University of Parma, and involving the universities of Bologna, Ferrara and Modena. The aim of the project was: - Production of polymorphs, solvates, hydrates and co-crystals of active pharmaceutical ingredients (APIs) and agrochemicals with green chemistry methods; - Optimization of molecular and crystalline forms of APIs and pesticides in relation to activity, bioavailability and patentability. In the last decades, a growing interest in the solid-state properties of drugs in addition to their solution chemistry has blossomed. The achievement of the desired and/or the more stable polymorph during the production process can be a challenge for the industry. The study of crystalline forms could be a valuable step to produce new polymorphs and/or co-crystals with better physical-chemical properties such as solubility, permeability, thermal stability, habit, bulk density, compressibility, friability, hygroscopicity and dissolution rate in order to have potential industrial applications. Selected APIs (active pharmaceutical ingredients) were studied and their relationship between crystal structure and properties investigated, both in the solid state and in solution. Polymorph screening and synthesis of solvates and molecular/ionic co-crystals were performed according to green chemistry principles. Part of this project was developed in collaboration with chemical/pharmaceutical companies such as BASF (Germany) and UCB (Belgium). We focused on on the optimization of conditions and parameters of crystallization processes (additives, concentration, temperature), and on the synthesis and characterization of ionic co-crystals. Moreover, during a four-months research period in the laboratories of Professor Nair Rodriguez-Hormedo (University of Michigan), the stability in aqueous solution at the equilibrium of ionic co-crystals (ICCs) of the API piracetam was investigated, to understand the relationship between their solid-state and solution properties, in view of future design of new crystalline drugs with predefined solid and solution properties.
Resumo:
The Large Hadron Collider, located at the CERN laboratories in Geneva, is the largest particle accelerator in the world. One of the main research fields at LHC is the study of the Higgs boson, the latest particle discovered at the ATLAS and CMS experiments. Due to the small production cross section for the Higgs boson, only a substantial statistics can offer the chance to study this particle properties. In order to perform these searches it is desirable to avoid the contamination of the signal signature by the number and variety of the background processes produced in pp collisions at LHC. Much account assumes the study of multivariate methods which, compared to the standard cut-based analysis, can enhance the signal selection of a Higgs boson produced in association with a top quark pair through a dileptonic final state (ttH channel). The statistics collected up to 2012 is not sufficient to supply a significant number of ttH events; however, the methods applied in this thesis will provide a powerful tool for the increasing statistics that will be collected during the next LHC data taking.
Resumo:
This is the first part of a study investigating a model-based transient calibration process for diesel engines. The motivation is to populate hundreds of parameters (which can be calibrated) in a methodical and optimum manner by using model-based optimization in conjunction with the manual process so that, relative to the manual process used by itself, a significant improvement in transient emissions and fuel consumption and a sizable reduction in calibration time and test cell requirements is achieved. Empirical transient modelling and optimization has been addressed in the second part of this work, while the required data for model training and generalization are the focus of the current work. Transient and steady-state data from a turbocharged multicylinder diesel engine have been examined from a model training perspective. A single-cylinder engine with external air-handling has been used to expand the steady-state data to encompass transient parameter space. Based on comparative model performance and differences in the non-parametric space, primarily driven by a high engine difference between exhaust and intake manifold pressures (ΔP) during transients, it has been recommended that transient emission models should be trained with transient training data. It has been shown that electronic control module (ECM) estimates of transient charge flow and the exhaust gas recirculation (EGR) fraction cannot be accurate at the high engine ΔP frequently encountered during transient operation, and that such estimates do not account for cylinder-to-cylinder variation. The effects of high engine ΔP must therefore be incorporated empirically by using transient data generated from a spectrum of transient calibrations. Specific recommendations on how to choose such calibrations, how many data to acquire, and how to specify transient segments for data acquisition have been made. Methods to process transient data to account for transport delays and sensor lags have been developed. The processed data have then been visualized using statistical means to understand transient emission formation. Two modes of transient opacity formation have been observed and described. The first mode is driven by high engine ΔP and low fresh air flowrates, while the second mode is driven by high engine ΔP and high EGR flowrates. The EGR fraction is inaccurately estimated at both modes, while EGR distribution has been shown to be present but unaccounted for by the ECM. The two modes and associated phenomena are essential to understanding why transient emission models are calibration dependent and furthermore how to choose training data that will result in good model generalization.
Resumo:
Gaussian-3 and MP2/aug-cc-pVnZ methods have been used to calculate geometries and thermochemistry of CS2(H2O)n, where n = 1–4. An extensive molecular dynamics search followed by optimization using these two methods located two dimers, six trimers, six tetramers, and two pentamers. The MP2/aug-cc-pVDZ structure matched best with the experimental result for the CS2(H2O) dimer, showing that diffuse functions are necessary to model the interactions found in this complex. For larger CS2(H2O)n clusters, the MP2/aug-cc-pVDZ minima are significantly different from the MP2(full)/6-31G* structures, revealing that the G3 model chemistry is not suitable for investigation of sulfur containing van der Waals complexes. Based on the MP2/aug-cc-pVTZ free energies, the concentration of saturated water in the atmosphere and the average amount of CS2 in the atmosphere, the concentrations of these clusters are predicted to be on the order of 105CS2(H2O) clusters∙cm−3 and 102 CS2(H2O)2 clusters∙cm−3 at 298.15 K. The MP2/aug-cc-pVDZ scaled harmonic and anharmonic frequencies of the most abundant dimer cluster at 298 K are presented, along with the MP2/aug-cc-pVDZ scaled harmonic frequencies for the CS2(H2O)n structures predicted to be present in a low-temperature molecular beam experiment.