945 resultados para Scoliosis Progression


Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIMS: To assess rates of periodontal disease progression in subjects with cleft lip, alveolus and palate (CLAP) over a 25-year period without regular maintenance care in a specialist setting and to compare those with those of subjects without alveolar clefts, i.e. cleft lip (CL) or cleft palate (CP). MATERIAL AND METHODS: Ten subjects with CLAP and 10 subjects with CL/CP were examined in 1979, 1987, 1993 and 2004. Probing pocket depth (PPD), clinical attachment level (CAL), bleeding on probing (BoP) and plaque control record (PCR) scores were recorded in all 20 subjects. RESULTS: High plaque and BoP scores were recorded at all examinations in both groups. Over 25 years, a statistically significant loss of mean full-mouth CAL of 1.52 +/- 0.12 mm (SD) and 1.66 +/- 0.15 mm occurred in the CLAP and CL/CP group respectively (p<0.05). A statistically significant increase (p<0.05) in mean full-mouth PPD of 0.35 +/- 0.12 mm was observed in the CL/CP group, whereas only a trend for a mean full-mouth increase in PPD of 0.09 +/- 0.11 mm was observed in the CLAP group. In subjects with CLAP, a statistically significant increase (p<0.05) in PPD of 0.92 +/- 1.13 mm at cleft sites was observed compared with that of 0.17 +/- 0.76 mm at control sites. With respect to CAL, the loss at the corresponding sites amounted to 2.71 +/- 1.46 and to 2.27 +/- 1.62 mm, respectively (p=0.36). CONCLUSIONS: When stringent and well-defined supportive periodontal therapy was not provided, subjects with orofacial clefts were at high risk for periodontal disease progression. Over 25 years, alveolar cleft sites tended to have more periodontal tissue destruction compared with control sites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic myeloid leukemia (CML) is a malignant myeloproliferative disease with a characteristic chronic phase (cp) of several years before progression to blast crisis (bc). The immune system may contribute to disease control in CML. We analyzed leukemia-specific immune responses in cpCML and bcCML in a retroviral-induced murine CML model. In the presence of cpCML and bcCML expressing the glycoprotein of lymphocytic choriomeningitis virus as a model leukemia antigen, leukemia-specific cytotoxic T lymphocytes (CTLs) became exhausted. They maintained only limited cytotoxic activity, and did not produce interferon-gamma or tumor necrosis factor-alpha or expand after restimulation. CML-specific CTLs were characterized by high expression of programmed death 1 (PD-1), whereas CML cells expressed PD-ligand 1 (PD-L1). Blocking the PD-1/PD-L1 interaction by generating bcCML in PD-1-deficient mice or by repetitive administration of alphaPD-L1 antibody prolonged survival. In addition, we found that PD-1 is up-regulated on CD8(+) T cells from CML patients. Taken together, our results suggest that blocking the PD-1/PD-L1 interaction may restore the function of CML-specific CTLs and may represent a novel therapeutic approach for CML.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phosphatidylethanolamine (PE) and phosphatidylcholine (PC) are the two major constituents of eukaryotic cell membranes. In the protist Trypanosoma brucei, PE and PC are synthesized exclusively via the Kennedy pathway. To determine which organelles or processes are most sensitive to a disruption of normal phospholipid levels, the cellular consequences of a decrease in the levels of PE or PC, respectively, were studied following RNAi knock-down of four enzymes of the Kennedy pathway. RNAi against ethanolamine-phosphate cytidylyltransferase (ET) disrupted mitochondrial morphology and ultrastructure. Electron microscopy revealed alterations of inner mitochondrial membrane morphology, defined by a loss of disk-like cristae. Despite the structural changes in the mitochondrion, the cells maintained oxidative phosphorylation. Our results indicate that the inner membrane morphology of T. brucei procyclic forms is highly sensitive to a decrease of PE levels, as a change in the ultrastructure of the mitochondrion is the earliest phenotype observed after RNAi knock-down of ET. Interference with phospholipid synthesis also impaired normal cell-cycle progression. ET RNAi led to an accumulation of multinucleate cells. In contrast, RNAi against choline-/ethanolamine phosphotransferase, which affected PC as well as PE levels, caused a cell division phenotype characterized by non-division of the nucleus and production of zoids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Trials assessing the benefit of immediate androgen-deprivation therapy (ADT) for treating prostate cancer (PCa) have often done so based on differences in detectable prostate-specific antigen (PSA) relapse or metastatic disease rates at a specific time after randomization. OBJECTIVE Based on the long-term results of European Organization for Research and Treatment of Cancer (EORTC) trial 30891, we questioned if differences in time to progression predict for survival differences. DESIGN, SETTING, AND PARTICIPANTS EORTC trial 30891 compared immediate ADT (n=492) with orchiectomy or luteinizing hormone-releasing hormone analog with deferred ADT (n=493) initiated upon symptomatic disease progression or life-threatening complications in randomly assigned T0-4 N0-2 M0 PCa patients. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Time to first objective progression (documented metastases, ureteric obstruction, not PSA rise) and time to objective castration-resistant progressive disease were compared as well as PCa mortality and overall survival. RESULTS AND LIMITATIONS After a median of 12.8 yr, 769 of the 985 patients had died (78%), 269 of PCa (27%). For patients receiving deferred ADT, the overall treatment time was 31% of that for patients on immediate ADT. Deferred ADT was significantly worse than immediate ADT for time to first objective disease progression (p<0.0001; 10-yr progression rates 42% vs 30%). However, time to objective castration-resistant disease after deferred ADT did not differ significantly (p=0.42) from that after immediate ADT. In addition, PCa mortality did not differ significantly, except in patients with aggressive PCa resulting in death within 3-5 yr after diagnosis. Deferred ADT was inferior to immediate ADT in terms of overall survival (hazard ratio: 1.21; 95% confidence interval, 1.05-1.39; p [noninferiority]=0.72, p [difference] = 0.0085). CONCLUSIONS This study shows that if hormonal manipulation is used at different times during the disease course, differences in time to first disease progression cannot predict differences in disease-specific survival. A deferred ADT policy may substantially reduce the time on treatment, but it is not suitable for patients with rapidly progressing disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pododermatitis is a worldwide problem in captive flamingos. We performed an evaluation of different influence factors (age, sex, weight, origin, breeding status) and a comparison of foot lesions between several zoological institutions and the feet of free-ranging Greater flamingos (Phoenicopterus roseus). A scoring system was used to determine the prevalence and types of lesions and severity. Cracks and nodules developed as early as 3 months of age and papillomatous growths as early as 6 to 7 months of age in captivity. Nodules with ulceration occurred significantly more often in birds older than 31 years and heavier than 4 kg. The comparison of different institutions revealed that birds kept in enclosures with natural-floored water ponds had significantly less severe lesions than birds kept in concrete water ponds. None of the free-ranging flamingos, which live on a muddy underground, showed any lesion. This study demonstrates that flooring, weight and age are important in the onset and progression of pododermatitis in flamingos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intraductal papillary neoplasms of the bile duct are still poorly characterized regarding (1) their molecular alterations during the development to invasive carcinomas, (2) their subtype stratification and (3) their biological behavior. We performed a multicenter study that analyzed these issues in a large European cohort. Intraductal papillary neoplasms of the bile duct from 45 patients were graded and subtyped using mucin markers and CDX2. In addition, tumors were analyzed for common oncogenic pathways, and the findings were correlated with subtype and grade. Data were compared with those from 22 extra- and intrahepatic cholangiocarcinomas. Intraductal papillary neoplasms showed a development from preinvasive low- to high-grade intraepithelial neoplasia to invasive carcinoma. Molecular and immunohistochemical analysis revealed mutated KRAS, overexpression of TP53 and loss of p16 in low-grade intraepithelial neoplasia, whereas loss of SMAD4 was found in late phases of tumor development. Alterations of HER2, EGFR, β-catenin and GNAS were rare events. Among the subtypes, pancreato-biliary (36%) and intestinal (29%) were the most common, followed by gastric (18%) and oncocytic (13%) subtypes. Patients with intraductal papillary neoplasm of the bile duct showed a slightly better overall survival than patients with cholangiocarcinoma (hazard ratio (cholangiocarcinoma versus intraductal papillary neoplasm of the bile duct): 1.40; 95% confidence interval: 0.46-4.30; P=0.552). The development of biliary intraductal papillary neoplasms of the bile duct follows an adenoma-carcinoma sequence that correlates with the stepwise activation of common oncogenic pathways. Further large trials are needed to investigate and verify the finding of a better prognosis of intraductal papillary neoplasms compared with conventional cholangiocarcinoma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxygen is the basic molecule which supports life and it truly is “god's gift to life.” Despite its immense importance, research on “oxygen biology” has never received the light of the day and has been limited to physiological and biochemical studies. It seems that in modern day biology, oxygen research is summarized in one word “hypoxia.” Scientists have focused on hypoxia-induced transcriptomics and molecular–cellular alterations exclusively in disease models. Interestingly, the potential of oxygen to control the basic principles of biology like homeostatic maintenance, transcription, replication, and protein folding among many others, at the molecular level, has been completely ignored. Here, we present a perspective on the crucial role played by oxygen in regulation of basic biological phenomena. Our conclusion highlights the importance of establishing novel research areas like oxygen biology, as there is great potential in this field for basic science discoveries and clinical benefits to the society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIMS:Duchenne muscular dystrophy (DMD) is a muscle disease with serious cardiac complications. Changes in Ca(2+) homeostasis and oxidative stress were recently associated with cardiac deterioration, but the cellular pathophysiological mechanisms remain elusive. We investigated whether the activity of ryanodine receptor (RyR) Ca(2+) release channels is affected, whether changes in function are cause or consequence and which post-translational modifications drive disease progression. METHODS AND RESULTS:Electrophysiological, imaging, and biochemical techniques were used to study RyRs in cardiomyocytes from mdx mice, an animal model of DMD. Young mdx mice show no changes in cardiac performance, but do so after ∼8 months. Nevertheless, myocytes from mdx pups exhibited exaggerated Ca(2+) responses to mechanical stress and 'hypersensitive' excitation-contraction coupling, hallmarks of increased RyR Ca(2+) sensitivity. Both were normalized by antioxidants, inhibitors of NAD(P)H oxidase and CaMKII, but not by NO synthases and PKA antagonists. Sarcoplasmic reticulum Ca(2+) load and leak were unchanged in young mdx mice. However, by the age of 4-5 months and in senescence, leak was increased and load was reduced, indicating disease progression. By this age, all pharmacological interventions listed above normalized Ca(2+) signals and corrected changes in ECC, Ca(2+) load, and leak. CONCLUSION:Our findings suggest that increased RyR Ca(2+) sensitivity precedes and presumably drives the progression of dystrophic cardiomyopathy, with oxidative stress initiating its development. RyR oxidation followed by phosphorylation, first by CaMKII and later by PKA, synergistically contributes to cardiac deterioration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multidrug resistance protein 4 (MRP4) is a transmembrane transport protein found in many cell types and is involved in substrate-specific transport of endogenous and exogenous substrates. Recently, it has shown to be expressed in prostate cancer cell lines and to be among the most commonly upregulated transcripts in prostate cancer, although a comprehensive expression analysis is lacking so far. We aimed to investigate its expression by immunohistochemistry in a larger cohort of neoplastic and nonneoplastic prostate tissues (n = 441) and to correlate its expression with clinicopathological parameters including PSA-free survival times and molecular correlates of androgen signaling (androgen receptor (AR), prostate-specific antigen (PSA), and forkhead box A (FoxA)). MRP4 is widely expressed in benign and neoplastic prostate epithelia, but its expression gradually decreases during tumor progression towards castrate-resistant disease. Concordantly, it correlated with conventional prognosticators of disease progression and-within the group of androgen-dependent tumors-with AR and FoxA expression. Moreover, lower levels of MRP4 expression were associated with shorter PSA relapse-free survival times in the androgen-dependent group. In benign tissues, we found zone-dependent differences of MRP4 expression, with the highest levels in the peripheral and central zones. Although MRP4 is known to be regulated in prostate cancer, this study is the first to demonstrate a gradual downregulation of MRP4 protein during malignant tumor progression and a prognostic value of this loss of expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: TRAIL plays an important role in host immunosurveillance against tumor progression, as it induces apoptosis of tumor cells but not normal cells, and thus has great therapeutic potential for cancer treatment. TRAIL binds to two cell-death-inducing (DR4 and DR5) and two decoy (DcR1, and DcR2) receptors. Here, we compare the expression levels of TRAIL and its receptors in normal oral mucosa (NOM), oral premalignancies (OPM), and primary and metastatic oral squamous cell carcinomas (OSCC) in order to characterize the changes in their expression patterns during OSCC initiation and progression. METHODS: DNA microarray, immunoblotting and immunohistochemical analyses were used to examine the expression levels of TRAIL and its receptors in oral epithelial cell lines and in archival tissues of NOM, OPM, primary and metastatic OSCC. Apoptotic rates of tumor cells and tumor-infiltrating lymphocytes (TIL) in OSCC specimens were determined by cleaved caspase 3 immunohistochemistry. RESULTS: Normal oral epithelia constitutively expressed TRAIL, but expression was progressively lost in OPM and OSCC. Reduction in DcR2 expression levels was noted frequently in OPM and OSCC compared to respective patient-matched uninvolved oral mucosa. OSCC frequently expressed DR4, DR5 and DcR1 but less frequently DcR2. Expression levels of DR4, DR5 and DcR1 receptors were not significantly altered in OPM, primary OSCC and metastatic OSCC compared to patient-matched normal oral mucosa. Expression of proapoptotic TRAIL-receptors DR4 and DR5 in OSCC seemed to depend, at least in part, on whether or not these receptors were expressed in their parental oral epithelia. High DR5 expression in primary OSCC correlated significantly with larger tumor size. There was no significant association between TRAIL-R expression and OSSC histology grade, nodal status or apoptosis rates of tumor cells and TIL. CONCLUSION: Loss of TRAIL expression is an early event during oral carcinogenesis and may be involved in dysregulation of apoptosis and contribute to the molecular carcinogenesis of OSCC. Differential expressions of TRAIL receptors in OSCC do not appear to play a crucial role in their apoptotic rate or metastatic progression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Artemis, a member of the SNM1 gene family, is one of the six known components of the non-homologous end joining pathway. It is a multifunctional phospho-protein that has been shown to be modified by the phosphatidylinositol 3-kinases (PIKs) DNA-PKcs, ATM and ATR in response to a variety of cellular stresses. Artemis has important roles in V(D)J recombination, DNA double strand breaks repair and damage-induced cell-cycle checkpoint regulation. The detailed mechanism by which Artemis mediates its functions in these cellular pathways needs to be further elucidated. My work presented here demonstrates a new function for Artemis in cell cycle regulation as a component of Cullin-based E3 ligase complex. I show that Artemis interacts with Cul4A-DDB1 ligase complex via a direct interaction with the substrate-specific receptor DDB2, and deletion mapping analysis shows that part of the Snm1 domain of Artemis is responsible for this interaction. Additionally, Artemis also interacts with p27, a substrate of Cul4A-DDB1 complex, and both DDB2 and Artemis are required for the degradation of p27 mediated by this complex. Furthermore, I show that the regulation of p27 by Artemis and DDB2 is critical for cell cycle progression in normally proliferating cells and in response to serum withdrawal. Finally, I provide evidence showing that Artemis may be also a part of other Cullin-based E3 ligase complexes, and it has a role in controlling p27 levels in response to different cellular stress, such as UV irradiation. These findings suggest a novel pathway to regulate p27 protein level and define a new function for Artemis as an effector of Cullin-based E3-ligase mediated ubiquitylation, and thus, a cell cycle regulator in proliferating cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Colorectal cancer (CRC) develops from multiple progressive modifications of normal intestinal epithelium into adenocarcinoma. Loss of cell polarity has been implicated as an early event in this process, but the molecular players involved are not well known. NHERF1 (Na+/H+ Exchanger Regulatory Factor 1) is an adaptor protein with apical membrane localization in polarized epithelia. In this study, we tested our hypothesis that NHERF1 plays a role in CRC. We examined surgical CRC resection specimens for changes in NHERF1 expression, and modeled these changes in two- and three-dimensional (2D and 3D) Caco-2 CRC cell systems. NHERF1 had significant alterations from normal to adenoma and carcinoma transitions (2=38.5, d.f.=4, P<0.001), displaying apical membrane localization in normal tissue but loss of expression in adenoma and ectopic overexpression in carcinoma. In Caco-2 cell models, NHERF1 depletion induced epithelial-mesenchymal-transition in 2D cell monolayers and disruption of apical-basal polarity in 3D cyst system. The mesenchymal phenotype of NHERF1-depleted cells was fully restored by re-expression of NHERF1 at the apical membrane. Cytoplasmic and nuclear NHERF1 re-expression not only failed to restore the epithelial phenotype but led to more aggressive phenotypes. Our findings suggest that membrane NHERF1 is an important regulator of epithelial morphogenesis, and that changes in NHERF1 expression correlate with CRC progression. NHERF1 loss and ectopic expression that induce massive disruption of epithelial cell polarity may, thereby, mark important steps in CRC development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Squamous cell carcinoma of head and neck (SCCHN) is the tenth most common cancer in the world. Unfortunately, the survival of patients with SCCHN has not improved in the last 40 years. Therefore new targets for therapy are needed, and to this end we are studying signaling pathways activated by IL-6 which we have found stimulates cell migration and soft agar growth in SCCHN. Our data show that IL-6 increases TWIST expression in a transcription-independent mechanism in many SCCHN cell lines. Further investigation reveals TWIST can be phosphorylated upon IL-6 treatment. By computation prediction (http://scansite.mit.edu/motifscan_seq.phtml ), we found that TWIST has a putative phosphorylation site for casein kinase 2 (CK2) suggesting that this kinase could serve as a link between IL-6 stimulation and Twist stability. To test this hypothesis, we used a CK2 inhibitor and shRNA to CK2 and found that these interventions inhibited IL-6 stimulation of TWIST stability. In addition, mutation of the putative CK2 phosphorylation site (S18/S20A) in TWIST decreased the amount of phospho-ATP incorporated by TWIST in an in vitro kinase assay, and altered TWIST stability. In Boyd chamber migration assay and wound-healing assay, the CK2 inhibitor, DMAT, was found to decrease the motility of IL-6 stimulated SCCHN cells and over expression of either a wild-type or the hyperphosphorylated mimicking mutant S18/20D –Twist rather than the hypo-phosphorylated mimicking mutant S18/20A-Twist can promote SCCHN cell motility.To our knowledge, this is the first report to identify the importance of IL-6 stimulated CK2 phosphorylation of TWIST in SCCHN. As CK2 inhibitors are currently under phase I clinical trials, our findings indicate that CK2 may be a viable therapeutic target in SCCHN. Therefore, further pre-clinical studies of this inhibitor are underway.