961 resultados para Sclerotinia stem rot
Resumo:
Inonotus splitbergeri é relatado pela primeira vez o Uruguay causando podridáo-do-lenho de Eucalyptus globulus. Durante as tempestades ocorre o tombamento de árvores, mesmo daquelas totalmente enfolhadas.
Resumo:
O efeito de diferentes temperaturas no solo e de diversas palhas sobre o solo na viabilidade dos escleródios de Sclerotinia sclerotiorum foi estudado em estufa. Em três ensaios de campo, estudou-se a solarização do solo associada à presença de palha de milho (Zea mays) sobre o solo na viabilidade de escleródios, durante três meses. Ensaios de campo foram realizados em Piracicaba e em Brasília. Escleródios foram produzidos em meio cenoura+fubá, e incorporados ao solo (ensaios em estufa), ou acondicionados em invólucros, e enterrados no solo a 5, 10 e 30 cm (ensaios no campo). Os tratamentos de solo no campo foram: solarizado (S), não solarizado (NS) e solarizado com adição de palha de milho (PS). Foram feitas avaliações a cada 30 dias, em meio NEON, observando a viabilidade e a presença de contaminantes nos escleródios. O aquecimento do solo em estufa a 50 e 60 ºC com diversas palhas inativou os escleródios, que tiveram maior incidência de contaminantes. No campo, o efeito da solarização do solo foi significativo, inviabilizando os escleródios enterrados a diferentes profundidades: em S após 90 dias, nas três profundidades, e em PS, após 60 dias, a 5 e 10 cm de profundidade. A incidência de escleródios contaminados em solos solarizados foi maior em S, seguido de PS. A maior variabilidade de contaminantes, porém, foi observada em PS. As temperaturas do solo em PS foram maiores quando comparadas aos outros tratamentos na mesma profundidade. Este fator proporcionou a redução do tempo da inativação dos escleródios de 90 dias em S, para 60 dias em PS.
Resumo:
A citrus tatter leaf isolate (CTLV-Cl) of Apple stem grooving virus (ASGV) has been found to be associated with a fruit rind intumescence in Cleopatra mandarin (Citrus reshni) in Limeira (SP). The CTLV-Cl was mechanically transmitted to the main experimental herbaceous hosts of CTLV. Chenopodium quinoa and C. amaranticolor reacted with local lesions and systemic symptoms while other test plants reacted somewhat differently than what is reported for CTLV. A pair of primers designed for specific detection of ASGV and CTLV amplified the expected 801 bp fragment from the CTLV-Cl-infected plants. Typical capillovirus-like particles were observed by the electron microscope in experimentally infected C. quinoa and C. amaranticolor leaves.
Resumo:
The increase in incidence of charcoal rot caused by Macrophomina phaseolina on soybeans (Glycine max) was followed four seasons in conventional and no-till cropping systems. In the 1997/98 and 2000/01 seasons, total precipitation between sowing and harvest reached 876.3 and 846.9 mm, respectively. For these seasons, disease incidence did not differ significantly between the no-till and conventional systems. In 1998/99 and 1999/00 precipitation totaled 689.9 and 478.3 mm, respectively. In 1998/99, in the no-till system, the disease incidence was 43.7% and 53.1% in the conventional system. In 1999/00 the final incidence was 68.7% and 81.2% for the no-till and conventional systems, respectively. For these two seasons, precipitation was lower than that required for soybean crops (840 mm), and the averages of disease incidence were significantly higher in the conventional system. The concentration of microsclerotia in soil samples was higher in samples collected in conventional system at 0 - 10 cm depth. However, analysis of microsclerotia in roots showed that in years with adequate rain no difference was detected. In dry years, however, roots from plants developed under the conventional system had significantly more microsclerotia. Because of the wide host range of M. phaseolina and the long survival times of the microsclerotia, crop rotation would probably have little benefit in reducing charcoal rot. Under these study conditions it may be a better alternative to suppress charcoal rot by using the no-till cropping system to conserve soil moisture and reduce disease progress.
Resumo:
Fusarium solani f. sp. piperis (teleomorph: Nectria haematococca f. sp. piperis), causal agent of root rot and stem blight on black pepper (Piper nigrum), produces secondary metabolites with toxigenic properties, capable of inducing vein discoloration in detached leaves and wilting in transpiring microcuttings. Production of F. solani f. sp. piperis (Fsp) toxic metabolites reached a peak after 25 days of static incubation on potato sucrose broth at 25 ºC under illumination. Changes in the pH of the culture filtrate did not alter the effect of toxic metabolites. However, when the pH was changed before the medium had been autoclaved, a more intense biological response was observed, with an optimum at pH 6.0. Isolates that produced red pigments in liquid cultures were more efficient in producing biologically active culture filtrates than those which produced pink coloured or clear filtrates suggesting that these pigments could be related to toxigenic activity. Detached leaves of seven black pepper cultivars and Piper betle showed symptoms of vein discoloration after immersion in autoclaved and non-autoclaved Fsp culture filtrates indicating the thermostable nature of these toxic metabolites.
Resumo:
A method to detect Apple stem grooving virus (ASGV) based on reverse transcription polymerase chain reaction (RT-PCR) was developed using primers ASGV4F-ASGV4R targeting the viral replicase gene, followed by a sandwich hybridisation, in microtiter plates, for colorimetric detection of the PCR products. The RT-PCR was performed with the Titan™ RT-PCR system, using AMV and diluted crude extracts of apple (Malus domestica) leaf or bark for the first strand synthesis and a mixture of Taq and PWO DNA polymerase for the PCR step. The RT-PCR products is hybridised with both a biotin-labelled capture probe linked to a streptavidin-coated microtiter plate and a digoxigenin (DIG)-labelled detection probe. The complex was detected with an anti-DIG conjugate labelled with alkaline phosphatase. When purified ASGV was added to extracts of plant tissue, as little as 400 fg of the virus was detected with this method. The assay with ASGV4F-ASGV4R primers specifically detected the virus in ASGV-infected apple trees from different origins, whereas no signal was observed with amplification products obtained with primers targeting the coat protein region of the ASGV genome or with primers specific for Apple chlorotic leaf spot virus (ACLSV) and Apple stem pitting virus (ASPV). The technique combines the power of PCR to increase the number of copies of the targeted gene, the specificity of DNA hybridization, and the ease of colorimetric detection and sample handling in microplates.
Resumo:
Rupestris stem pitting associated virus (RSPaV) é o agente causal das "caneluras do tronco de Rupestris" da videira (Vitis spp.). Neste trabalho, um isolado de RSPaV, encontrado em videiras cv. Cabernet Franc no Rio Grande do Sul, foi estudado. O vírus foi detectado biologicamente, por enxertia em videira indicadora cv. Rupestris du Lot, em 26,2% das amostras avaliadas. A seqüência parcial do gene da replicase do RSPaV, isolado sul-brasileiro, com 831 nucleotídeos amplificados por RT-PCR e 276 aminoácidos deduzidos, apresentou maior identidade de nucleotídeos (98,1%) e aminoácidos deduzidos (99,6%), com dois isolados norte-americanos. O RSPaV estudado apresentou baixa homologia (37-41%) com outros vírus do gênero Foveavirus. A maioria das mudas de videira cv. C. Franc infetadas com RSPaV apresentou diminuição no potencial fotossintético (2,68 a 5,12 vezes) e aumento na taxa respiratória no escuro quando comparadas a mudas sadias, salientando os impactos que esse vírus pode proporcionar no potencial produtivo de videiras.
Resumo:
Surveys of soybean (Glycine max) seed grown in South Brazil revealed infection with Fusarium graminearum. To determine if members of this complex were pathogenic to soybean, six strains derived from soybean were added to soil at a rate of 10³ macroconidia/ ml or individual pods were inoculated with 10(4) macroconidia/ml. Seedlings grown in infested soil developed small necrotic lesions in the crown and upper roots. Pods inoculated with conidia developed large (>1 cm), dark brown, necrotic lesions. Younger pods inoculated with the fungus blighted and dropped from the plant. Strains of the F. graminearum complex recovered from lesions on the crown, roots and pods of soybean plants were identified as lineage 1, 2 or 8 by obtaining the DNA sequence from the EF1-alpha gene and comparing it to strains of the known lineage. Two strains of F. graminearum lineage 7 from the U.S. caused similar symptoms of the disease on soybean. Mycotoxin tests on soybean and wheat (Triticum aestivum) indicate that most Brazilian strains produce nivalenol as the major trichothecene mycotoxin rather than deoxynivalenol. In addition, strains from lineages 2 and 8 produce the novel trichothecene, 3-acetylnivalenol.
Resumo:
The coat protein gene of Apple stem grooving virus (ASGV) was amplified by RT-PCR, cloned, sequenced and subcloned in the expression vector pMal-c2. This plasmid was used to transform Escherichia coli BL21c+ competent cells. The ASGV coat protein (cp) was expressed as a fusion protein containing a fragment of E. coli maltose binding protein (MBP). Bacterial cells were disrupted by sonication and the ASGVcp/MBP fusion protein was purified by amylose resin affinity chromatography. Polyclonal antibodies from rabbits immunized with the fusion protein gave specific reactions to ASGV from infected apple (Malus domestica) cv. Fuji Irradiada and Chenopodium quinoa at dilutions of up to 1:1,000 and 1:2,000, respectively, in plate trapped ELISA. The ASGVcp/MBP fusion protein reacted to a commercial antiserum against ASGV in immunoblotting assay. The IgG against ASGVcp/MBP performed favorably in specificity and sensitivity to the virus. This method represents an additional tool for the efficient ASGV-indexing of apple propagative and mother stock materials, and for use in support of biological and molecular techniques.
Resumo:
Ceratocystis fimbriata was found sporulating in gray to black discolored areas on edible corms of Colocasia esculenta found in supermarkets in the states of São Paulo, Rio de Janeiro, Bahia, Rondônia and the Distrito Federal. In most cases the corms were grown in the state of São Paulo. The black rot appeared to occur post-harvest. Sequences of rDNA indicated that the Colocasia sp. isolates belong to the Latin American clade of the C. fimbriata complex, but the isolates were more aggressive than isolates from Ficus carica and Mangifera indica, in pseudopetioles of C. esculenta.
Resumo:
O mofo branco causado por Sclerotinia sclerotiorum pode inviabilizar o cultivo de olerícolas em ambiente protegido. Para elaborar-se um programa de controle biológico desse patógeno, necessita-se de antagonistas adequados. Este trabalho objetivou selecionar antagonistas fúngicos eficazes no controle de S. sclerotiorum em pepineiro (Cucumis sativus) cultivado em estufa, bem como, analisar a interferência dos antagonistas no crescimento vegetal. Foram utilizados um isolado de S. sclerotiorum obtido de pepineiro e 112 isolados fúngicos de quatro gêneros: Trichoderma, Fusarium, Penicillium e Aspergillus. Em experimento in vitro, foi utilizada a técnica do papel celofane e selecionados oito isolados de Trichoderma virens, os quais promoveram maior inibição no crescimento do patógeno (94 a 100%). Dois experimentos in vivo foram desenvolvidos em estufa utilizando-se substrato autoclavado e não autoclavado, em copos plásticos, e substrato não autoclavado, em sacos plásticos; o substrato foi infestado com S. sclerotiorum e foram utilizados oito isolados de T. virens como antagonistas. Todos os isolados testados controlaram o tombamento de mudas, mas o efeito sobre o crescimento vegetal variou de acordo com os isolados e o tratamento do substrato.
Resumo:
Stunting and stem necrosis were noticed in soybeans (Glycine max) grown in 2000/2001 in West Central Brazil the same condition was also observed in the following year in plantations as far as 2,000 km from the initial area. Based on transmission (mechanical, graft, insect vector), purification and serology, electron microscopy and molecular studies the causal agent was determined to be a whitefly-borne carlavirus which is possibly related to Cowpea mild mottle virus (CpMMV).