923 resultados para Scalling and root planning
Resumo:
Genetic modification of shoot and root morphology has potential to improve water and nutrient 19 uptake of wheat crops in rainfed environments. Near-isogenic lines (NILs) varying for a tillering 20 inhibition (tin) gene and representing multiple genetic backgrounds were investigated in contrasting 21 controlled environments for shoot and root growth. Leaf area, shoot and root biomass were similar 22 until tillering whereupon reduced tillering in tin-containing NILs produced reductions of up to 60% in 23 total leaf area and biomass, and increases in total root length of up to 120% and root biomass to 24 145%. Together, root-to-shoot ratio increased two-fold with the tin gene. The influence of tin on shoot 25 and root growth was greatest in the cv. Banks genetic background, particularly in the biculm-selected 26 NIL, and was typically strongest in cooler environments. A separate de-tillering study confirmed 27 greater root-to-shoot ratios with regular tiller removal in non-tin containing genotypes. In validating 28 these observations in a rainfed field study, the tin allele had a negligible effect on seedling growth but 29 was associated with significantly (P<0.05) reduced tiller number (-37%), leaf area index (-26%) and 30 spike number (-35%) to reduce plant biomass (-19%) at anthesis. Root biomass, root-to-shoot ratio at 31 early stem elongation and root depth at maturity were increased in tin-containing NILs. Soil water use 32 was slowed in tin-containing NILs resulting in greater water availability, greater stomatal 33 conductance, cooler canopy temperatures and maintenance of green leaf area during grain-filling. 34 Together these effects contributed to increases in harvest index and grain yield. In both the controlled 35 and field environments, the tin gene was commonly associated with increased root length and biomass 36 but the significant influence of genetic background and environment suggests careful assessment of 37 tin-containing progeny in selection for genotypic increases in root growth.
Resumo:
The effect of nitrogen on the root system of the species Panicum maximum Jacq. cv. IPR-86 Mil (e) over cap nio, under grazing, was evaluated. The N rates were 0; 150; 300 and 450 kg/ha. year. The root density was evaluated during pregrazing at five years of successive N application, in three depths (0-10; 10-20 and 20-40 cm) and the root growth at 7, 14, 21, and 35 days after grazing. The grazing method adopted was rotational stocking. Root length and root mass densities in pre-and post-grazing presented maximum values at rates 204, 206, 192, and 197 kg/ha of N, respectively. The root growth (in root length density) increased, on average, until 29 days after grazing at rates 0, 150, and 300 kg/ha; at 450 kg/ha N rate, the increase was linear. Independently of N rates, around 60 and 25% of IPR-86 Mil (e) over cap nio cultivar root system was concentrated in 0-10 and 10-20 cm depth, respectively.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Estudou-se o efeito do tratamento de sementes de algodão com cloreto de mepiquat sobre o crescimento inicial de raízes e parte aérea. O experimento, realizado em casa de vegetação, utilizou vasos de PVC adaptados com uma parede frontal de vidro e os tratamentos foram constituídos por cinco doses do cloreto de mepiquat (CM) do ingrediente ativo (i.a.): 0, 3, 6, 9 e 12 g kg-1 de sementes, pulverizado sobre as sementes, e a cultivar FM 993. Massa de matéria seca da parte aérea (folhas, pecíolos e haste), massa de matéria seca da raiz, área foliar, relação parte aérea:raiz, relação área foliar:crescimento radicular, o comprimento da parte aérea foram avaliados aos 21 dias após a semeadura. Crescimento radicular foi avaliado a cada três dias até os 18 dias. O CM aplicado às sementes do algodão promove redução da altura da planta e da área foliar, sem, contudo, afetar produção de massa de matéria seca da parte aérea e raiz, relação parte aérea:raiz, relação área foliar:crescimento radicular e comprimento total de raízes do algodoeiro. Assim, no presente experimento não foi observado efeito negativo do CM aplicado às sementes do algodoeiro na absorção de água pela planta.
Resumo:
Background: the aim of the present study was to compare the effects of Er:YAG and diode laser treatments of the root surface on intrapulpal temperature after scaling and root planing with hand instruments.Methods: Fifteen extracted single-rooted teeth were scaled and root planed with hand instruments. The teeth were divided into 3 groups of 5 each and irradiated on their buccal and lingual surfaces: group A: Er:YAG laser, 2.94 mum/100 mJ/10 Hz/ 30 seconds; group B: diode laser, 810 nm/1.0 W/0.05 ms/30 seconds; group C: diode laser, 810 nm/1.4 W/0.05 ms/30 seconds. The temperature was monitored by means of a type T thermocouple (copper-constantan) positioned in the pulp chamber to assess pulpal temperature during and before irradiation. Afterwards, the specimens were longitudinally sectioned, and the buccal and lingual surfaces of each root were analyzed by scanning electron microscopy.Results: In the Er:YAG laser group, the thermal analysis revealed an average temperature of -2.2 +/- 1.5degreesC, while in the diode laser groups, temperatures were 1.6 +/- 0.8degreesC at 1.0 W and 3.3 +/- 1.0degreesC at 1.4 W. Electronic micrographs revealed that there were no significant morphological changes, such as charring, melting, or fusion, in any group, although the specimens were found to be more irregular in the Er:YAG laser group.Conclusions: the application of Er:YAG and diode lasers at the utilized parameters did not induce high pulpal temperatures. Root surface irregularities were more pronounced after irradiation with an Er:YAG laser than with a diode laser.
Resumo:
The aim of this study was to conduct an in vitro evaluation, by scanning electron microscopy (SEM), of the adhesion of blood components on root surfaces irradiated with Er,Cr:YSGG (2.78 mu m) or Er:YAG (2.94 mu m) laser, and of the irradiation effects on root surface morphology. Sixty samples of human teeth were previously scaled with manual instruments and divided into three groups of 20 samples each: G1 (control group) - no treatment; G2 - Er,Cr:YSGG laser irradiation; G3 - Er:YAG laser irradiation. After performing these treatments, blood tissue was applied to 10 samples of each group, whereas 10 samples received no blood tissue application. After performing the laboratory treatments, the samples were observed under SEM, and the resulting photomicrographs were classified according to a blood component adhesion scoring system and root morphology. The results were analyzed statistically (Kruskall-Wallis and Mann Whitney tests, alpha = 5%). The root surfaces irradiated with Er:YAG and Er,Cr:YSGG lasers presented greater roughness than those in the control group. Regarding blood component adhesion, the results showed a lower degree of adhesion in G2 than in G1 and G3 (G1 x G2: p = 0.002; G3 x G2: p = 0.017). The Er:YAG and Er,Cr:YSGG laser treatments caused more extensive root surface changes. The Er:YAG laser treatment promoted a greater degree of blood component adhesion to root surfaces, compared to the Er,Cr:YSGG treatment.
Resumo:
The present study was designed to investigate the effectiveness of different ultrasonic instruments on the root surface. Fourteen patients with 35 single root teeth designated for extraction were recruited to the present study. Teeth were assigned to four experimental groups: group 1, piezoelectric ultrasonic device; group 2, magnetostrictive ultrasonic device; group 3, hand instrumentation; and group 4, untreated teeth (control). After instrumentation, the teeth were extracted and the presence of residual deposits (roughness and root surfaces characteristics) were analyzed. The results showed that residual deposits were similar in all tested groups: piezoelectric, 8.7%; magnetostrictive, 9.7%; hand instrumentation, 11.1% and control, 76.4%. There were statistically significant differences between control and all the experimental groups (p < 0.0001). With respect to roughness parameters evaluation, R(a) and R(z) of the roots treated with the different instruments showed a similar pattern (p > 0.05), but for R(t) and R(y), a significant difference was observed (p < 0.05) among hand instrumentation and ultrasonic devices. SEM analysis revealed a similar root surface pattern for the ultrasonic devices, but curettes showed many instrumental scratches, deep gouges, and a relatively large amount of dentin was removed. Within the limits of the study, although the instruments produced similar results, root surfaces instrumentated with curettes were rougher and had more root surface tissue removed than with the ultrasonic device.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The influence of the allelochemicals ferulic (FA) and vanillic (VA) acids on peroxidase (POD, EC 1.11.1.7) and phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) activities and their relationships with phenolic acid (PhAs) contents and root growth of soybean (Glycine max (L.) Merr.) were examined. Three-day-old seedlings were cultivated in nutrient solution containing FA or VA (0.1 to 1 mM) for 48 h. Both compounds (at 0.5 and 1 mM) decreased root length (RL), fresh weight (FW) and dry weight (DW) and increased PhAs contents. At 0.5 and 1 mM, FA increased soluble POD activity (18% and 47%, respectively) and cell wall (CW)-bound POD activity (61% and 34%), while VA increased soluble POD activity (33% and 17%) but did not affect CW-bound POD activity. At I mM, FA increased (82%) while VA reduced (32%) PAL activities. The results are discussed on the basis of the role of these compounds on phenylpropanoid metabolism and root growth and suggest that the effects caused on POD and PAL activities are some of the many mechanisms by which allelochemicals influence plant growth.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Purpose: To evaluate the effect of cyclical mechanical loading on the bond strength of a fiber and a zirconia post bonded to root dentin.Materials and Methods: Forty single-rooted human teeth (maxillary incisors and canines) were sectioned, and the root canals were prepared at 12 mm. Twenty randomly seleced specimens received a quartz fiber post (FRC) (D.T. Light-Post) and 20 others received a zirconia post (ZR) (Cosmopost). The posts were resin luted (All Bond 2 + resin cement Duo-link) and each specimen was embedded in epoxy resin inside a PVC cylinder. Ten specimens with FRC post and 10 specimens with ZR post were submitted to fatigue testing (2,000,000 cycles; load: 50 N; angle of 45 degrees; frequency: 8 Hz), while the other 20 specimens were not fatigued. Thus, 4 groups were formed: G1: FRC+O cycles; G2: FRC+2,000,000 cycles; G3: ZR+O cycles; G4: ZR+2,000,000 cycles. Later, the specimens were cut perpendicular to their long axis to form 2-mm-thick disk-shaped samples (4 sections/specimen), which were submitted to the push-out test (1 mm/min). The mean bond strength values (MPa) were calculated for each tooth (n = 10) and data were submitted to statistical analysis (alpha = 0.05).Results: Two-way ANOVA revealed that the bond strength was significantly affected by mechanical cycling (p = 0.0014) and root post (p = 0.0325). The interaction was also statistically significant (p = 0.0010). Tukey's test showed that the mechanical cycling did not affect the bonding of FRC to root dentin, while fatigue impaired the bonding of zirconium to root dentin.Conclusion: (1) the bond strength of the FRC post to root dentin was not reduced after fatigue testing, whereas the bonding of the zirconia post was significantly affected by the fatigue. (2) Cyclical mechanical loading appears to damage the bond strength of the rigid post only.