950 resultados para Scaling
Resumo:
Objectives. To evaluate the effect of pH of storage medium on slow crack growth (SCG) parameters of dental porcelains. Methods. Two porcelains were selected: with (UD) and without (VM7) leucite particles, in order to assess if the microstructure would affect the response of the material to the pH variation. Disc specimens were produced following manufacturers` instructions. Specimens were stored in artificial saliva in pHs 3.5, 7.0 or 10.0 for 10 days and after that the fatigue parameters (n: SCG susceptibility coefficient and sigma(0): scaling parameter) were obtained by the dynamic fatigue test using the same pH of storage. Microstructural analysis of the materials was also performed. Results. For VM7, the values of n obtained in the different pHs were similar and varied from 29.9 to 31.2. The sigma(0) value obtained in pH 7.0 for VM7 was higher than that obtained in the other pHs, which were similar. For porcelain UD, n values obtained in pHs 7.0 and 10.0 were similar (40.8 and 39.6, respectively), and higher than that obtained in pH 3.5 (26.5). With respect to sigma(0), the value obtained for porcelain UD in pH 10.0 was lower than those obtained in pHs 3.5 and 7.0, which were similar. Significance. The effect of pH on the stress corrosion susceptibility (n) depended on the porcelain studied. While the n value of VM7 was not affected by the pH, UD presented lower n value in acid pH. For both porcelains, storage in acid or basic pH resulted in strength degradation. (C) 2007 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
We present a mathematical framework that combines extinction-colonization dynamics with the dynamics of patch succession. We draw an analogy between the epidemiological categorization of individuals (infected, susceptible, latent and resistant) and the patch structure of a spatially heterogeneous landscape (occupied-suitable, empty-suitable, occupied-unsuitable and empty-unsuitable). This approach allows one to consider life-history attributes that influence persistence in patchy environments (e.g., longevity, colonization ability) in concert with extrinsic processes (e.g., disturbances, succession) that lead to spatial heterogeneity in patch suitability. It also allows the incorporation of seed banks and other dormant life forms, thus broadening patch occupancy dynamics to include sink habitats. We use the model to investigate how equilibrium patch occupancy is influenced by four critical parameters: colonization rate? extinction rate, disturbance frequency and the rate of habitat succession. This analysis leads to general predictions about how the temporal scaling of patch succession and extinction-colonization dynamics influences long-term persistence. We apply the model to herbaceous, early-successional species that inhabit open patches created by periodic disturbances. We predict the minimum disturbance frequency required far viable management of such species in the Florida scrub ecosystem. (C) 2001 Academic Press.
Resumo:
We derive optimal N-photon two-mode input states for interferometric phase measurements. Under canonical measurements the phase variance scales as N-2 for these states, as compared to N-1 or N-1/2 for states considered bq previous authors. We prove, that it is not possible to realize the canonical measurement by counting photons in the outputs of the interferometer, even if an adjustable auxiliary phase shift is allowed in the interferometer. However. we introduce a feedback algorithm based on Bayesian inference to control this auxiliary phase shift. This makes the measurement close to a canonical one, with a phase variance scaling slightly above N-2. With no feedback, the best result (given that the phase to be measured is completely unknown) is a scaling of N-1. For optimal input states having up to four photons, our feedback scheme is the best possible one, but for higher photon numbers more complicated schemes perform marginally better.
Resumo:
The vascular and bryophyte floras of subantarctic Heard Island were classified using cluster analysis into six vegetation communities: Open Cushion Carpet, Mossy Feldmark, Wet Mixed Herbfield, Coastal Biotic Vegetation, Saltspray Vegetation, and Closed Cushion Carpet. Multidimensional scaling indicated that the vegetation communities were not well delineated but were continua. Discriminant analysis and a classification tree identified altitude, wind, peat depth, bryophyte cover and extent of bare ground, and particle size as discriminating variables. The combination of small area, glaciation, and harsh climate has resulted in reduced vegetation variety in comparison to those subantarctic islands north of the Antarctic Polar Front Zone. Some of the functional groups and vegetation communities found on warmer subantarctic islands are not present on Heard Island, notably ferns and sedges and fernbrakes and extensive mires, respectively.
Resumo:
As discussed in the preceding paper [Wiseman and Vaccaro, preceding paper, Phys. Rev. A 65, 043605 (2002)], the stationary state of an optical or atom laser far above threshold is a mixture of coherent field states with random phase, or, equivalently, a Poissonian mixture of number states. We are interested in which, if either, of these descriptions of rho(ss) as a stationary ensemble of pure states, is more natural. In the preceding paper we concentrated upon the question of whether descriptions such as these are physically realizable (PR). In this paper we investigate another relevant aspect of these ensembles, their robustness. A robust ensemble is one for which the pure states that comprise it survive relatively unchanged for a long time under the system evolution. We determine numerically the most robust ensembles as a function of the parameters in the laser model: the self-energy chi of the bosons in the laser mode, and the excess phase noise nu. We find that these most robust ensembles are PR ensembles, or similar to PR ensembles, for all values of these parameters. In the ideal laser limit (nu=chi=0), the most robust states are coherent states. As the phase noise or phase dispersion is increased through nu or the self-interaction of the bosons chi, respectively, the most robust states become more and more amplitude squeezed. We find scaling laws for these states, and give analytical derivations for them. As the phase diffusion or dispersion becomes so large that the laser output is no longer quantum coherent, the most robust states become so squeezed that they cease to have a well-defined coherent amplitude. That is, the quantum coherence of the laser output is manifest in the most robust PR ensemble being an ensemble of states with a well-defined coherent amplitude. This lends support to our approach of regarding robust PR ensembles as the most natural description of the state of the laser mode. It also has interesting implications for atom lasers in particular, for which phase dispersion due to self-interactions is expected to be large.
Resumo:
This paper presents a new theory of hypersonic blunt-nose shock standoff, based on a compressibility coordinate transformation for inviscid flow. It embraces a wide range of nonequilibrium shock-layer chemistry and gas mixtures including ionization and freestream dissociation. An extended binary scaling property of the analysis is also demonstrated. Specific application is made here to the family of arbitrarily diluted dissociating diatomic gases, with parametric study results presented for the scaled shock standoff distance as a function of an appropriate blunt-nose region Damkohler number. Comparisons with other theories and data in the case of nitrogen are also given and discussed.
Resumo:
Genetic diversity in Cassia brewsteri (F. Muell.) F. Muell. ex Benth. was assessed with Randomly Amplified DNA Fingerprints (RAFs). Thirty accessions of C. brewsteri collected from throughout its natural distribution were analysed with three random decamer primers, along with three accessions of C. tomentella (Benth.) Domin and a single accession of each of C. queenslandica C. T. White and C. marksiana (F. M. Bailey) Domin. The three primers yielded a reproducible amplification profile of 265 scorable polymorphic fragments for the 35 accessions. These molecular markers were used to calculate Nei and Li similarity coefficients between each pair of individuals. A matrix of dissimilarity of each pair of individuals was examined by multidimensional scaling (MDS). The analysis supports the division of C. brewsteri into two subspecies and the suggestion that intergradation of C. brewsteri and C. tomentella can occur where the distributions of these species meet.
Resumo:
There is considerable anecdotal evidence from industry that poor wetting and liquid distribution can lead to broad granule size distributions in mixer granulators. Current scale-up scenarios lead to poor liquid distribution and a wider product size distribution. There are two issues to consider when scaling up: the size and nature of the spray zone and the powder flow patterns as a function of granulator scale. Short, nucleation-only experiments in a 25L PMA Fielder mixer using lactose powder with water and HPC solutions demonstrated the existence of different nucleation regimes depending on the spray flux Psi(a)-from drop-controlled nucleation to caking. In the drop-controlled regime at low Psi(a) values. each drop forms a single nucleus and the nuclei distribution is controlled by the spray droplet size distribution. As Psi(a) increases, the distribution broadens rapidly as the droplets overlap and coalesce in the spray zone. The results are in excellent agreement with previous experiments and confirm that for drop-controlled nucleation. Psi(a) should be less than 0.1. Granulator flow studies showed that there are two powder flow regimes-bumping and roping. The powder flow goes through a transition from bumping to roping as impeller speed is increased. The roping regime gives good bed turn over and stable flow patterns. This regime is recommended for good liquid distribution and nucleation. Powder surface velocities as a function of impeller speed were measured using high-speed video equipment and MetaMorph image analysis software, Powder surface velocities were 0.2 to 1 ms(-1)-an order of magnitude lower than the impeller tip speed. Assuming geometrically similar granulators, impeller speed should be set to maintain constant Froude number during scale-up rather than constant tip speed to ensure operation in the roping regime. (C) 2002 Published by Elsevier Science B.V.
Resumo:
A model of iron carbonate (FeCO3) film growth is proposed, which is an extension of the recent mechanistic model of carbon dioxide (CO2) corrosion by Nesic, et al. In the present model, the film growth occurs by precipitation of iron carbonate once saturation is exceeded. The kinetics of precipitation is dependent on temperature and local species concentrations that are calculated by solving the coupled species transport equations. Precipitation tends to build up a layer of FeCO3 on the surface of the steel and reduce the corrosion rate. On the other hand, the corrosion process induces voids under the precipitated film, thus increasing the porosity and leading to a higher corrosion rate. Depending on the environmental parameters such as temperature, pH, CO2 partial pressure, velocity, etc., the balance of the two processes can lead to a variety of outcomes. Very protective films and low corrosion rates are predicted at high pH, temperature, CO2 partial pressure, and Fe2+ ion concentration due to formation of dense protective films as expected. The model has been successfully calibrated against limited experimental data. Parametric testing of the model has been done to gain insight into the effect of various environmental parameters on iron carbonate film formation. The trends shown in the predictions agreed well with the general understanding of the CO2 corrosion process in the presence of iron carbonate films. The present model confirms that the concept of scaling tendency is a good tool for predicting the likelihood of protective iron carbonate film formation.
Resumo:
In this paper we propose a second linearly scalable method for solving large master equations arising in the context of gas-phase reactive systems. The new method is based on the well-known shift-invert Lanczos iteration using the GMRES iteration preconditioned using the diffusion approximation to the master equation to provide the inverse of the master equation matrix. In this way we avoid the cubic scaling of traditional master equation solution methods while maintaining the speed of a partial spectral decomposition. The method is tested using a master equation modeling the formation of propargyl from the reaction of singlet methylene with acetylene, proceeding through long-lived isomerizing intermediates. (C) 2003 American Institute of Physics.
Resumo:
In this paper we propose a novel fast and linearly scalable method for solving master equations arising in the context of gas-phase reactive systems, based on an existent stiff ordinary differential equation integrator. The required solution of a linear system involving the Jacobian matrix is achieved using the GMRES iteration preconditioned using the diffusion approximation to the master equation. In this way we avoid the cubic scaling of traditional master equation solution methods and maintain the low temperature robustness of numerical integration. The method is tested using a master equation modelling the formation of propargyl from the reaction of singlet methylene with acetylene, proceeding through long lived isomerizing intermediates. (C) 2003 American Institute of Physics.
Resumo:
In standard cylindrical gradient coils consisting of a single layer of wires, a limiting factor in achieving very large magnetic field gradients is the rapid increase in coil resistance with efficiency. This is a particular problem in small-bore scanners, such as those used for MR microscopy. By adopting a multi-layer design in which the coil wires are allowed to spread out into multiple layers wound at increasing radii, a more favourable scaling of resistance with efficiency is achieved, thus allowing the design of more powerful gradient coils with acceptable resistance values. Previously this approach has been applied to the design of unshielded, longitudinal, and transverse gradient coils. Here, the multi-layer approach has been extended to allow the design of actively shielded multi-layer gradient coils, and also to produce coils exhibiting enhanced cooling characteristics. An iterative approach to modelling the steady-state temperature distribution within the coil has also been developed. Results indicate that a good level of screening can be achieved in multi-layer coils, that small versions of such coils can yield higher efficiencies at fixed resistance than conventional two-layer (primary and screen) coils, and that performance improves as the number of layers of increases. Simulations show that by optimising multi-layer coils for cooling it is possible to achieve significantly higher gradient strengths at a fixed maximum operating temperature. A four-layer coil of 8 mm inner diameter has been constructed and used to test the steady-state temperature model. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
In small, cylindrical gradient coils consisting of a single layer of wires, the limiting factor in achieving large magnetic field gradients is the rapid increase in coil resistance with efficiency. This behavior results from the decrease in the maximum usable wire diameter as the number of turns is increased. By adopting a multilayer design in which the coil wires are allowed to spread out into multiple layers wound at increasing radii, a more favorable scaling of resistance with efficiency is achieved, thus allowing the design of more powerful gradient coils with acceptable resistance values. By extending the theory used to design standard cylindrical gradient coils, mathematical expressions have been developed that allow the design of multilayer coils. These expressions have previously been applied to the design of a four-layer z-gradient coil. As a further development, the equations have now been modified to allow the design of multilayer transverse gradient coils. The variation in coil performance with the number of layers employed has been investigated for coils of a size suitable for use in NMR microscopy, and the effect of constructing the coil using wires or cuts in a continuous conducting surface has also been assessed. We find that at fixed resistance a small wire-wound two-layer coil offers an increase in efficiency of a factor of about 1.5 compared with a single-layer coil. In addition, a two-layer coil of 10-mm inner diameter has been designed and built. This coil had an efficiency of 0.41 Tm-1 A(-1), a resistance of 0.96 +/- 0.01 Omega, and an inductance of 22.3 +/- 0.2 muH. The coil produces a gradient that deviates from linearity by less than 5% over a central cylindrical region of interest of height and length 6.2 mm. (C) 2003 Wiley Periodicals, Inc.
Resumo:
Increased professionalism in rugby has elicited rapid changes in the fitness profile of elite players. Recent research, focusing on the physiological and anthropometrical characteristics of rugby players, and the demands of competition are reviewed. The paucity of research on contemporary elite rugby players is highlighted, along with the need for standardised testing protocols. Recent data reinforce the pronounced differences in the anthropometric and physical characteristics of the forwards and backs. Forwards are typically heavier, taller, and have a greater proportion of body fat than backs. These characteristics are changing, with forwards developing greater total mass and higher muscularity. The forwards demonstrate superior absolute aerobic and anaerobic power, and Muscular strength. Results favour the backs when body mass is taken into account. The scaling of results to body mass can be problematic and future investigations should present results using power function ratios. Recommended tests for elite players include body mass and skinfolds, vertical jump, speed, and the multi-stage shuttle run. Repeat sprint testing is a possible avenue for more specific evaluation of players. During competition, high-intensity efforts are often followed by periods of incomplete recovery. The total work over the duration of a game is lower in the backs compared with the forwards; forwards spend greater time in physical contact with the opposition while the backs spend more time in free running, allowing them to cover greater distances. The intense efforts undertaken by rugby players place considerable stress on anaerobic energy sources, while the aerobic system provides energy during repeated efforts and for recovery. Training should focus on repeated brief high-intensity efforts with short rest intervals to condition players to the demands of the game. Training for the forwards should emphasise the higher work rates of the game, while extended rest periods can be provided to the backs. Players should not only be prepared for the demands of competition, but also the stress of travel and extreme environmental conditions. The greater professionalism of rugby union has increased scientific research in the sport; however, there is scope for significant refinement of investigations on the physiological demands of the game, and sports-specific testing procedures.
Resumo:
O Transtorno do Espectro do Autismo (TEA) caracteriza-se por uma série de distúrbios cognitivos e neurocomportamentais e sua prevalência mundial é estimada em 1 criança com TEA a cada 160 crianças com típico desenvolvimento (TD). Indivíduos com TEA apresentam dificuldade em interpretar as emoções alheias e em expressar sentimentos. As emoções podem ser associadas à manifestação de sinais fisiológicos, e, dentre eles, os sinais cerebrais têm sido muito abordados. A detecção dos sinais cerebrais de crianças com TEA pode ser benéfica para o esclarecimento de suas emoções e expressões. Atualmente, muitas pesquisas integram a robótica ao tratamento pedagógico do TEA, através da interação com crianças com esse transtorno, estimulando habilidades sociais, como a imitação e a comunicação. A avaliação dos estados mentais de crianças com TEA durante a sua interação com um robô móvel é promissora e assume um aspecto inovador. Assim, os objetivos deste trabalho foram captar sinais cerebrais de crianças com TEA e de crianças com TD, como grupo controle, para o estudo de seus estados emocionais e para avaliar seus estados mentais durante a interação com um robô móvel, e avaliar também a interação dessas crianças com o robô, através de escalas quantitativas. A técnica de registro dos sinais cerebrais escolhida foi a eletroencefalografia (EEG), a qual utiliza eletrodos colocados de forma não invasiva e não dolorosa sobre o couro cabeludo da criança. Os métodos para avaliar a eficiência do uso da robótica nessa interação foram baseados em duas escalas internacionais quantitativas: Escala de Alcance de Metas (do inglês Goal Attainment Scaling - GAS) e Escala de Usabilidade de Sistemas (do inglês System Usability Scale - SUS). Os resultados obtidos mostraram que, pela técnica de EEG, foi possível classificar os estados emocionais de crianças com TD e com TEA e analisar a atividade cerebral durante o início da interação com o robô, através dos ritmos alfa e beta. Com as avaliações GAS e SUS, verificou-se que o robô móvel pode ser considerado uma potencial ferramenta terapêutica para crianças com TEA.