997 resultados para Scale insects


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The human resource (HR) function is under pressure both to change roles and to play a large variety of roles. Questions of change and development in the HR function become particularly interesting in the context of mergers and acquisitions when two corporations are integrated. The purpose of the thesis is to examine the roles played by the HR function in the context of large-scale mergers and thus to understand what happens to the HR function in such change environments, and to shed light on the underlying factors that influence changes in the HR function. To achieve this goal, the study seeks first to identify the roles played by the HR function before and after the merger, and second, to identify the factors that affect the roles played by the HR function. It adopts a qualitative case study approach including ten focal case organisations (mergers) and four matching cases (non-mergers). The sample consists of large corporations originating from either Finland or Sweden. HR directors and members of the top management teams within the case organisations were interviewed. The study suggests that changes occur within the HR function, and that the trend is for the HR function to become increasingly strategic. However, the HR function was found to play strategic roles only when the HR administration ran smoothly. The study also suggests that the HR function has become more versatile. An HR function that was perceived to be mainly administrative before the merger is likely after the merger to perform some strategically important activities in addition to the administrative ones. Significant changes in the roles played by the HR function were observed in some of the case corporations. This finding suggests that the merger integration process is a window of opportunity for the HR function. HR functions that take a proactive and leading role during the integration process might expand the number of roles played and move from being an administrator before the merger to also being a business partner after integration. The majority of the HR functions studied remained mainly reactive during the organisational change process and although the evidence showed that they moved towards strategic tasks, the intra-functional changes remained comparatively small in these organisations. The study presents a new model that illustrates the impact of the relationship between the top management team and the HR function on the role of the HR function. The expectations held by the top management team for the HR function and the performance of the HR function were found to interact. On a dimension reaching from tactical to strategic, HR performance is likely to correspond to the expectations held by top management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This correspondence describes a method for automated segmentation of speech. The method proposed in this paper uses a specially designed filter-bank called Bach filter-bank which makes use of 'music' related perception criteria. The speech signal is treated as continuously time varying signal as against a short time stationary model. A comparative study has been made of the performances using Mel, Bark and Bach scale filter banks. The preliminary results show up to 80 % matches within 20 ms of the manually segmented data, without any information of the content of the text and without any language dependence. The Bach filters are seen to marginally outperform the other filters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper proposes a time scale separated partial integrated guidance and control of an interceptor for engaging high speed targets in the terminal phase. In this two loop design, the outer loop is an optimal control formulation based on nonlinear model predictive spread control philosophies. It gives the commanded pitch and yaw rates whereas necessary roll-rate command is generated from a roll-stabilization loop. The inner loop tracks the outer loop commands using the dynamicinversion philosophy. However, unlike conventional designs, in both the loops the Six degree of freedom (Six-DOF) interceptor model is used directly. This intelligent manipulation preserves the inherent time scale separation property between the translational and rotational dynamics, and hence overcomes the deficiency of current IGC designs, while preserving its benefits. Six-DOF simulation studies have been carried out accounting for three dimensional engagement geometry. Different comparison studies were also conducted to measure the performance of the algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The near flow field of small aspect ratio elliptic turbulent free jets (issuing from nozzle and orifice) was experimentally studied using a 2D PIV. Two point velocity correlations in these jets revealed the extent and orientation of the large scale structures in the major and minor planes. The spatial filtering of the instantaneous velocity field using Gaussian convolution kernel shows that while a single large vortex ring circumscribing the jet seems to be present at the exit of nozzle, the orifice jet exhibited a number of smaller vortex ring pairs close to jet exit. The smaller length scale observed in the case of the orifice jet is representative of the smaller azimuthal vortex rings that generate axial vortex field as they are convected. This results in the axis-switching in the case of orifice jet and may have a mechanism different from the self induction process as observed in the case of contoured nozzle jet flow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An attempt to diagnose the dominant forcings which drive the large-scale vertical velocities over the monsoon region has been made by computing the forcings like diabatic heating fields,etc. and the large-scale vertical velocities driven by these forcings for the contrasting periods of active and break monsoon situations; in order to understand the rainfall variability associated with them. Computation of diabatic heating fields show us that among different components of diabatic heating it is the convective heating that dominates at mid-tropospheric levels during an active monsoon period; whereas it is the sensible heating at the surface that is important during a break period. From vertical velocity calculations we infer that the prime differences in the large-scale vertical velocities seen throughout the depth of the atmosphere are due to the differences in the orders of convective heating; the maximum rate of latent heating being more than 10 degrees Kelvin per day during an active monsoon period; whereas during a break monsoon period it is of the order of 2 degrees Kelvin per day at mid-tropospheric levels. At low levels of the atmosphere, computations show that there is large-scale ascent occurring over a large spatial region, driven only by the dynamic forcing associated with vorticity and temperature advection during an active monsoon period. However, during a break monsoon period such large-scale spatial organization in rising motion is not seen. It is speculated that these differences in the low-level large-scale ascent might be causing differences in convective heating because the weaker the low level ascent, the lesser the convective instability which produces deep cumulus clouds and hence lesser the associated latent heat release. The forcings due to other components of diabatic heating, namely, the sensible heating and long wave radiative cooling do not influence the large-scale vertical velocities significantly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, an ultrasonic wave propagation in graphene sheet is studied using nonlocal elasticity theory incorporating small scale effects. The graphene sheet is modeled as an isotropic plate of one-atom thick. For this model, the nonlocal governing differential equations of motion are derived from the minimization of the total potential energy of the entire system. An ultrasonic type of wave propagation model is also derived for the graphene sheet. The nonlocal scale parameter introduces certain band gap region in in-plane and flexural wave modes where no wave propagation occurs. This is manifested in the wavenumber plots as the region where the wavenumber tends to infinite or wave speed tends to zero. The frequency at which this phenomenon occurs is called the escape frequency. The explicit expressions for cutoff frequencies and escape frequencies are derived. The escape frequencies are mainly introduced because of the nonlocal elasticity. Obviously these frequencies are function of nonlocal scaling parameter. It has also been obtained that these frequencies are independent of y-directional wavenumber. It means that for any type of nanostructure, the escape frequencies are purely a function of nonlocal scaling parameter only. It is also independent of the geometry of the structure. It has been found that the cutoff frequencies are function of nonlocal scaling parameter (e(0)a) and the y-directional wavenumber (k(y)). For a given nanostructure, nonlocal small scale coefficient can be obtained by matching the results from molecular dynamics (MD) simulations and the nonlocal elasticity calculations. At that value of the nonlocal scale coefficient, the waves will propagate in the nanostructure at that cut-off frequency. In the present paper, different values of e(o)a are used. One can get the exact e(0)a for a given graphene sheet by matching the MD simulation results of graphene with the results presented in this paper. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Agri-environmental schemes have so far resulted in only minor positive implications for the biodiversity of agricultural environments, in contrast to what has been expected. Land-use intensification has decreased landscape heterogeneity and the amount of semi-natural habitats. Field margins are uncultivated areas of permanent vegetation located adjacent to fields. Since the number of these habitats is high, investing in their quality may result in more diverse agricultural landscapes. Field margins can be considered as multifunctional habitats providing agronomic, environmental and wildlife services. This thesis aimed at examining the plant communities of different types of field margin habitats and the factors affecting their species diversity and composition. The importance of edaphic, spatial and management factors was studied on regional, landscape and habitat scales. Vegetation surveys were conducted on regional and landscape scales and a field experiment on cutting management was conducted on a habitat scale. In field margin plant communities, species appeared to be indicators of high or intermediate soil fertility and moist soil conditions. The plant species diversity found was rather low, compared with most species-rich agricultural habitats in Finland, such as dry meadows. Among regions, land-use history, main production line, natural species and human induced distribution, climate and edaphic factors were elements inducing differences in species composition. The lowest regional species diversity of field margins was related to intensive and long-term cereal production. Management by cutting and removal or grazing had a positive effect on plant species diversity. The positive effect of cutting and removal on species richness was also dependent on the adjacent source of colonizing species. Therefore, in species-poor habitats and landscapes, establishment of margins with diverse seed mixtures can be recommended for enhancing the development of species richness. However, seed mixtures should include only native species preferably local origin. Management by cutting once a year for 5 years did not result in a decline in dominance of a harmful weed species, Elymus repens, showing that E. repens probably needs cutting more frequently than once per year. Agri-environmental schemes should include long-term contracts with farmers for the establishment, and management by cutting and removal or grazing, of field margins that are several metres wide. In such schemes, the timing and frequency of management should be planned so as not to harm other taxa, such as the insects and birds that are dependent on these habitats. All accidental herbicide drifts to field margins should be avoided when spraying the cultivated area to minimize the negative effects of sprayings on vegetation. The harmful effects of herbicides can be avoided by organic farming methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the chemical weathering processes and fluxes in a small experimental watershed (SEW) through a modelling approach. The study site is the Mule Hole SEW developed on a gneissic basement located in the climatic gradient of the Western Ghats, South India. The model couples a lumped hydrological model simulating the water budget at the watershed scale to the WITCH model estimating the dissolution/precipitation rates of minerals using laboratory kinetic laws. Forcing functions and parameters of the simulation are defined by the field data. The coupled model is calibrated with stream and groundwater compositions through the testing of a large range of smectite solubility and abundance in the soil horizons. We found that, despite the low abundance of smectite in the dominant soil type of the watershed (4 vol.%), their net dissolution provides 75% of the export of dissolved silica, while primary silicate mineral dissolution releases only 15% of this flux. Overall, smectites (modelled as montmorillonites) are not stable under the present day climatic conditions. Furthermore, the dissolution of trace carbonates in the saprolitic horizon provides 50% of the calcium export at the watershed scale. Modelling results show the contrasted behavior of the two main soil types of the watershed: red soils (88% of the surface) are provider of calcium, while black soils (smectite-rich and characterized by a lower drainage) consumes calcium through overall carbonate precipitation. Our model results stress the key role played by minor/accessory minerals and by the thermodynamic properties of smectite minerals, and by the drainage of the weathering profiles on the weathering budget of a tropical watershed. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presence/absence data of twenty-seven forest insect taxa (e.g. Retinia resinella, Formica spp., Pissodes spp., several scolytids) and recorded environmental variation were used to investigate the applicability of modelling insect occurrence based on satellite imagery. The sampling was based on 1800 sample plots (25 m by 25 m) placed along the sides of 30 equilateral triangles (side 1 km) in a fragmented forest area (approximately 100 km2) in Evo, S Finland. The triangles were overlaid on land use maps interpreted from satellite images (Landsat TM 30 m multispectral scanner imagery 1991) and digitized geological maps. Insect occurrence was explained using either environmental variables measured in the field or those interpreted from the land use and geological maps. The fit of logistic regression models varied between species, possibly because some species may be associated with the characteristics of single trees while other species with stand characteristics. The occurrence of certain insect species at least, especially those associated with Scots pine, could be relatively accurately assessed indirectly on the basis of satellite imagery and geological maps. Models based on both remotely sensed and geological data better predicted the distribution of forest insects except in the case of Xylechinus pilosus, Dryocoetes sp. and Trypodendron lineatum, where the differences were relatively small in favour of the models based on field measurements. The number of species was related to habitat compartment size and distance from the habitat edge calculated from the land use maps, but logistic regressions suggested that other environmental variables in general masked the effect of these variables in species occurrence at the present scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper describes the sensitivity of the simulated precipitation to changes in convective relaxation time scale (TAU) of Zhang and McFarlane (ZM) cumulus parameterization, in NCAR-Community Atmosphere Model version 3 (CAM3). In the default configuration of the model, the prescribed value of TAU, a characteristic time scale with which convective available potential energy (CAPE) is removed at an exponential rate by convection, is assumed to be 1 h. However, some recent observational findings suggest that, it is larger by around one order of magnitude. In order to explore the sensitivity of the model simulation to TAU, two model frameworks have been used, namely, aqua-planet and actual-planet configurations. Numerical integrations have been carried out by using different values of TAU, and its effect on simulated precipitation has been analyzed. The aqua-planet simulations reveal that when TAU increases, rate of deep convective precipitation (DCP) decreases and this leads to an accumulation of convective instability in the atmosphere. Consequently, the moisture content in the lower-and mid-troposphere increases. On the other hand, the shallow convective precipitation (SCP) and large-scale precipitation (LSP) intensify, predominantly the SCP, and thus capping the accumulation of convective instability in the atmosphere. The total precipitation (TP) remains approximately constant, but the proportion of the three components changes significantly, which in turn alters the vertical distribution of total precipitation production. The vertical structure of moist heating changes from a vertically extended profile to a bottom heavy profile, with the increase of TAU. Altitude of the maximum vertical velocity shifts from upper troposphere to lower troposphere. Similar response was seen in the actual-planet simulations. With an increase in TAU from 1 h to 8 h, there was a significant improvement in the simulation of the seasonal mean precipitation. The fraction of deep convective precipitation was in much better agreement with satellite observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Light scattering, or scattering and absorption of electromagnetic waves, is an important tool in all remote-sensing observations. In astronomy, the light scattered or absorbed by a distant object can be the only source of information. In Solar-system studies, the light-scattering methods are employed when interpreting observations of atmosphereless bodies such as asteroids, atmospheres of planets, and cometary or interplanetary dust. Our Earth is constantly monitored from artificial satellites at different wavelengths. With remote sensing of Earth the light-scattering methods are not the only source of information: there is always the possibility to make in situ measurements. The satellite-based remote sensing is, however, superior in the sense of speed and coverage if only the scattered signal can be reliably interpreted. The optical properties of many industrial products play a key role in their quality. Especially for products such as paint and paper, the ability to obscure the background and to reflect light is of utmost importance. High-grade papers are evaluated based on their brightness, opacity, color, and gloss. In product development, there is a need for computer-based simulation methods that could predict the optical properties and, therefore, could be used in optimizing the quality while reducing the material costs. With paper, for instance, pilot experiments with an actual paper machine can be very time- and resource-consuming. The light-scattering methods presented in this thesis solve rigorously the interaction of light and material with wavelength-scale structures. These methods are computationally demanding, thus the speed and accuracy of the methods play a key role. Different implementations of the discrete-dipole approximation are compared in the thesis and the results provide practical guidelines in choosing a suitable code. In addition, a novel method is presented for the numerical computations of orientation-averaged light-scattering properties of a particle, and the method is compared against existing techniques. Simulation of light scattering for various targets and the possible problems arising from the finite size of the model target are discussed in the thesis. Scattering by single particles and small clusters is considered, as well as scattering in particulate media, and scattering in continuous media with porosity or surface roughness. Various techniques for modeling the scattering media are presented and the results are applied to optimizing the structure of paper. However, the same methods can be applied in light-scattering studies of Solar-system regoliths or cometary dust, or in any remote-sensing problem involving light scattering in random media with wavelength-scale structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An implicit sub-grid scale model for large eddy simulation is presented by utilising the concept of a relaxation system for one dimensional Burgers' equation in a novel way. The Burgers' equation is solved for three different unsteady flow situations by varying the ratio of relaxation parameter (epsilon) to time step. The coarse mesh results obtained with a relaxation scheme are compared with the filtered DNS solution of the same problem on a fine mesh using a fourth-order CWENO discretisation in space and third-order TVD Runge-Kutta discretisation in time. The numerical solutions obtained through the relaxation system have the same order of accuracy in space and time and they closely match with the filtered DNS solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Observational studies indicate that the convective activity of the monsoon systems undergo intraseasonal variations with multi-week time scales. The zone of maximum monsoon convection exhibits substantial transient behavior with successive propagating from the North Indian Ocean to the heated continent. Over South Asia the zone achieves its maximum intensity. These propagations may extend over 3000 km in latitude and perhaps twice the distance in longitude and remain as coherent entities for periods greater than 2-3 weeks. Attempts to explain this phenomena using simple ocean-atmosphere models of the monsoon system had concluded that the interactive ground hydrology so modifies the total heating of the atmosphere that a steady state solution is not possible, thus promoting lateral propagation. That is, the ground hydrology forces the total heating of the atmosphere and the vertical velocity to be slightly out of phase, causing a migration of the convection towards the region of maximum heating. Whereas the lateral scale of the variations produced by the Webster (1983) model were essentially correct, they occurred at twice the frequency of the observed events and were formed near the coastal margin, rather than over the ocean. Webster's (1983) model used to pose the theories was deficient in a number of aspects. Particularly, both the ground moisture content and the thermal inertia of the model were severely underestimated. At the same time, the sea surface temperatures produced by the model between the equator and the model's land-sea boundary were far too cool. Both the atmosphere and the ocean model were modified to include a better hydrological cycle and ocean structure. The convective events produced by the modified model possessed the observed frequency and were generated well south of the coastline. The improved simulation of monsoon variability allowed the hydrological cycle feedback to be generalized. It was found that monsoon variability was constrained to lie within the bounds of a positive gradient of a convective intensity potential (I). The function depends primarily on the surface temperature, the availability of moisture and the stability of the lower atmosphere which varies very slowly on the time scale of months. The oscillations of the monsoon perturb the mean convective intensity potential causing local enhancements of the gradient. These perturbations are caused by the hydrological feedbacks, discussed above, or by the modification of the air-sea fluxes caused by variations of the low level wind during convective events. The final result is the slow northward propagation of convection within an even slower convective regime. The ECMWF analyses show very similar behavior of the convective intensity potential. Although it is considered premature to use the model to conduct simulations of the African monsoon system, the ECMWF analysis indicates similar behavior in the convective intensity potential suggesting, at least, that the same processes control the low frequency structure of the African monsoon. The implications of the hypotheses on numerical weather prediction of monsoon phenomenon are discussed.