974 resultados para SOMATIC ANTIGENS
Resumo:
The characterization of cellular changes that occur during somatic embryogenesis is essential for understanding the factors involved in the transition of somatic cells into embryogenically competent cells and determination of cells and/or tissues involved. The present study describes the anatomical and ultrastructural events that lead to the formation of somatic embryos in the model system of the wild passion fruit (Passiflora cincinnata). Mature zygotic embryos were inoculated in Murashige and Skoog induction media supplemented with 2,4-dichlorophenoxyacetic acid and 6-benzyladenine. Zygotic embryo explants at different development stages were collected and processed by conventional methods for studies using light, scanning, and transmission electron microscopy (TEM). Histochemical tests were used to examine the mobilization of reserves. The differentiation of the somatic embryos began in the abaxial side of the cotyledon region. Protuberances were formed from the meristematic proliferation of the epidermal and mesophyll cells. These cells had large nuclei, dense cytoplasm with a predominance of mitochondria, and a few reserve compounds. The protuberances extended throughout the abaxial surface of the cotyledons. The ongoing differentiation of peripheral cells of these structures led to the formation of proembryogenic zones, which, in turn, dedifferentiated into somatic embryos of multicellular origin. In the initial stages of embryogenesis, the epidermal and mesophyll cells showed starch grains and less lipids and protein reserves than the starting explant. These results provide detailed information on anatomical and ultrastructural changes involved in the acquisition of embryogenic competence and embryo differentiation that has been lacking so far in Passiflora.
Resumo:
Abstract Background The naturally-acquired immune response to Plasmodium vivax variant antigens (VIR) was evaluated in individuals exposed to malaria and living in different endemic areas for malaria in the north of Brazil. Methods Seven recombinant proteins representing four vir subfamilies (A, B, C, and E) obtained from a single patient from the Amazon Region were expressed in Escherichia coli as soluble glutathione S-transferase fusion proteins. The different recombinant proteins were compared by ELISA with regard to the recognition by IgM, IgG, and IgG subclass of antibodies from 200 individuals with patent infection. Results The frequency of individuals that presented antibodies anti-VIR (IgM plus IgG) during the infection was 49%. The frequencies of individuals that presented IgM or IgG antibodies anti-VIR were 29.6% or 26.0%, respectively. The prevalence of IgG antibodies against recombinant VIR proteins was significantly lower than the prevalence of antibodies against the recombinant proteins representing two surface antigens of merozoites of P. vivax: AMA-1 and MSP119 (57.0% and 90.5%, respectively). The cellular immune response to VIR antigens was evaluated by in vitro proliferative assays in mononuclear cells of the individuals recently exposed to P. vivax. No significant proliferative response to these antigens was observed when comparing malaria-exposed to non-exposed individuals. Conclusion This study provides evidence that there is a low frequency of individuals responding to each VIR antigens in endemic areas of Brazil. This fact may explain the host susceptibility to new episodes of the disease.
Resumo:
Abstract Background Gyr cows are well adapted to tropical conditions, resistant to some tropical diseases and have satisfactory milk production. However, Gyr dairy herds have a high prevalence of subclinical mastitis, which negatively affects their milk yield and composition. The objectives of this study were (i) to evaluate the effects of seasonality, mammary quarter location (rear x front), mastitis-causing pathogen species, and somatic cell count (SCC) on milk composition in Gyr cows with mammary quarters as the experimental units and (ii) to evaluate the effects of seasonality and somatic cell count (SCC) on milk composition in Gyr cows with cows as the experimental units. A total of 221 lactating Gyr cows from three commercial dairy farms were selected for this study. Individual foremilk quarter samples and composite milk samples were collected once a month over one year from all lactating cows for analysis of SCC, milk composition, and bacteriological culture. Results Subclinical mastitis reduced lactose, nonfat solids and total solids content, but no difference was found in the protein and fat content between infected and uninfected quarters. Seasonality influenced milk composition both in mammary quarters and composite milk samples. Nevertheless, there was no effect of mammary quarter position on milk composition. Mastitis-causing pathogens affected protein, lactose, nonfat solids, and total solids content, but not milk fat content. Somatic cell count levels affected milk composition in both mammary quarters and composite samples of milk. Conclusions Intramammary infections in Gyr cows alter milk composition; however, the degree of change depends on the mastitis-causing pathogen. Somatic cell count is negatively associated with reduced lactose and nonfat solids content in milk. Seasonality significantly affects milk composition, in which the concentration of lactose, fat, protein, nonfat solids and total solids differs between dry and wet seasons in Gyr cows.
Resumo:
OBJECTIVE: The objective of this study was to evaluate the frequencies of human platelet antigens in oncohematological patients with thrombocytopenia and to analyze the probability of their incompatibility with platelet transfusions. METHODS: Platelet antigen genotyping was performed by sequence-specific primer polymerase chain reaction (SSP-PCR) for the HPA-1a, HPA-1b, HPA-2a, HPA-2b, HPA-3a, HPA-3b, HPA-4a, HPA-4b, HPA-5a, HPA-5b; HPA-15a, HPA-15b alleles in 150 patients of the Hematology Service of the Hospital das Clínicas (FMUSP). RESULTS: The allele frequencies found were: HPA-1a: 0.837; HPA-1b: 0.163; HPA-2a: 0.830; HPA-2b: 0.170; HPA-3a: 0.700; HPA-3b: 0.300; HPA-4a: 1; HPA-4b: 0; HPA-5a: 0.887; HPA-5b: 0.113; HPA-15a: 0.457 and HPA-15b: 0.543. CONCLUSIONS: Data from the present study showed that the A allele is more common in the population than the B allele, except for HPA-15. This suggests that patients homozygous for the B allele are more predisposed to present alloimmunization and refractoriness to platelet transfusions by immune causes. Platelet genotyping could be of great value in the diagnosis of alloimmune thrombocytopenia and to provide compatible platelet concentrates for these patients.
Resumo:
Millions of people worldwide are currently infected with human papillomavirus (HPV), herpes simplex virus (HSV) or human immunodeficiency virus (HIV). For this enormous contingent of people, the search for preventive and therapeutic immunological approaches represents a hope for the eradication of latent infection and/or virus-associated cancer. To date, attempts to develop vaccines against these viruses have been mainly based on a monovalent concept, in which one or more antigens of a virus are incorporated into a vaccine formulation. In the present report, we designed and tested an immunization strategy based on DNA vaccines that simultaneously encode antigens for HIV, HSV and HPV. With this purpose in mind, we tested two bicistronic DNA vaccines (pIRES I and pIRES II) that encode the HPV-16 oncoprotein E7 and the HIV protein p24 both genetically fused to the HSV-1 gD envelope protein. Mice i.m. immunized with the DNA vaccines mounted antigen-specific CD8⁺ T cell responses, including in vivo cytotoxic responses, against the three antigens. Under experimental conditions, the vaccines conferred protective immunity against challenges with a vaccinia virus expressing the HIV-derived protein Gag, an HSV-1 virus strain and implantation of tumor cells expressing the HPV-16 oncoproteins. Altogether, our results show that the concept of a trivalent HIV, HSV, and HPV vaccine capable to induce CD8⁺ T cell-dependent responses is feasible and may aid in the development of preventive and/or therapeutic approaches for the control of diseases associated with these viruses.
Resumo:
BACKGROUND: Antibodies have an essential role in the acquired immune response against blood stage P. falciparum infection. Although several antigens have been identified as important antibody targets, it is still elusive which antigens have to be recognized for clinical protection. Herein, we analyzed antibodies from plasmas from symptomatic or asymptomatic individuals living in the same geographic area in the Western Amazon, measuring their recognition of multiple merozoite antigens. METHODS: Specific fragments of genes encoding merozoite proteins AMA1 and members of MSP and EBL families from circulating P. falciparum field isolates present in asymptomatic and symptomatic patients were amplified by PCR. After cloning and expression of different versions of the antigens as recombinant GST-fusion peptides, we tested the reactivity of patients' plasmas by ELISA and the presence of IgG subclasses in the most reactive plasmas. RESULTS: 11 out of 24 recombinant antigens were recognized by plasmas from either symptomatic or asymptomatic infections. Antibodies to MSP9 (X2(DF=1) = 9.26/p = 0.0047) and MSP5 (X2(DF=1) = 8.29/p = 0.0069) were more prevalent in asymptomatic individuals whereas the opposite was observed for MSP1 block 2-MAD20 (X2(DF=1) = 6.41/p = 0.0206, Fisher's exact test). Plasmas from asymptomatic individuals reacted more intensely against MSP4 (U = 210.5, p < 0.03), MSP5 (U = 212, p < 0.004), MSP9 (U = 189.5, p < 0.002) and EBA175 (U = 197, p < 0.014, Mann-Whitney's U test). IgG1 and IgG3 were predominant for all antigens, but some patients also presented with IgG2 and IgG4. The recognition of MSP5 (OR = 0.112, IC95% = 0.021-0.585) and MSP9 (OR = 0.125, IC95% = 0.030-0.529, cross tab analysis) predicted 8.9 and 8 times less chances, respectively, to present symptoms. Higher antibody levels against MSP5 and EBA175 were associated by odds ratios of 9.4 (IC95% = 1.29-69.25) and 5.7 (IC95% = 1.12-29.62, logistic regression), respectively, with an asymptomatic status. CONCLUSIONS: Merozoite antigens were targets of cytophilic antibodies and antibodies against MSP5, MSP9 and EBA175 were independently associated with decreased symptoms.
Resumo:
The humoral immune response is dependent on the formation of antibodies. Antibodies are produced by terminally differentiated B cells, plasma cells. Plasma cells are generated either directly from antigen challenged B cells, memory cells or from cells that have undergone the germinal center (GC) reaction. The GC is the main site for class switch, somatic hypermutation and generation of memory cells. Different factors, both internal and external, shape the outcome of the immune response. In this thesis, we have studied a few factors that influence the maturation of the humoral response. We have studied how age affects the response, and we show that responses against thymus dependent antigens (TD) are more affected than responses to thymus independent (TI) antigens, in concordance with the view that the T cell compartment is more affected by age than the B cell compartment. Furthermore, we demonstrate that priming early in life have a big influence on the immune response in the aged individual. Priming with a TI form of the carbohydrate dextran B512 (Dx) induces a reduction of IgG levels in later TD responses against Dx. We have evaluated possible mechanisms for this reduction. The reduction does not seem to be caused by clonal exhaustion or antibody mediated mechanisms. We also showed that the reduced TD response after TI priming can be induced against another molecule than Dx. With the hypothesis that TI antigens induce a plasma cell biased maturation of the responding B cells, we examined the presence of Blimp-1, a master regulator of plasma cell differentiation, in GCs induced by TD and TI antigen. Blimp-1 was found earlier in GCs induced by TI antigen and the staining intensity in these GCs was stronger than in TD antigen induced GCs, indicating that plasma cells might be continuously recruited from these GCs. B cells undergoing the GC reaction are thought to be under a strict selection pressure that removes cells with low affinity for the antigen and also cells that have acquired self-reactivity. We investigated the effect of apoptotic deficiencies on the accumulation of somatic mutations in GC B cells. In mice lacking the death receptor Fas, lpr mice, the frequency of mutations was increased but the pattern of the mutations did not differ from wild type mice. In contrast, mice over-expressing the anti-apoptotic protein Bcl-2, had a lowered frequency of mutations and the mutations introduced had other characteristics.
Resumo:
This PhD thesis discusses the rationale for design and use of synthetic oligosaccharides for the development of glycoconjugate vaccines and the role of physicochemical methods in the characterization of these vaccines. The study concerns two infectious diseases that represent a serious problem for the national healthcare programs: human immunodeficiency virus (HIV) and Group A Streptococcus (GAS) infections. Both pathogens possess distinctive carbohydrate structures that have been described as suitable targets for the vaccine design. The Group A Streptococcus cell membrane polysaccharide (GAS-PS) is an attractive vaccine antigen candidate based on its conserved, constant expression pattern and the ability to confer immunoprotection in a relevant mouse model. Analysis of the immunogenic response within at-risk populations suggests an inverse correlation between high anti-GAS-PS antibody titres and GAS infection cases. Recent studies show that a chemically synthesized core polysaccharide-based antigen may represent an antigenic structural determinant of the large polysaccharide. Based on GAS-PS structural analysis, the study evaluates the potential to exploit a synthetic design approach to GAS vaccine development and compares the efficiency of synthetic antigens with the long isolated GAS polysaccharide. Synthetic GAS-PS structural analogues were specifically designed and generated to explore the impact of antigen length and terminal residue composition. For the HIV-1 glycoantigens, the dense glycan shield on the surface of the envelope protein gp120 was chosen as a target. This shield masks conserved protein epitopes and facilitates virus spread via binding to glycan receptors on susceptible host cells. The broadly neutralizing monoclonal antibody 2G12 binds a cluster of high-mannose oligosaccharides on the gp120 subunit of HIV-1 Env protein. This oligomannose epitope has been a subject to the synthetic vaccine development. The cluster nature of the 2G12 epitope suggested that multivalent antigen presentation was important to develop a carbohydrate based vaccine candidate. I describe the development of neoglycoconjugates displaying clustered HIV-1 related oligomannose carbohydrates and their immunogenic properties.
Resumo:
Tumor-assoziierte Antigene (TAA) repräsentieren wichtige Zielstrukturen in zytotoxischen T-Zell (ZTL)-basierten Immuntherapien zur Behandlung maligner Erkrankungen. Die Tatsache, dass TAA nicht spezifisch nur in Tumoren sondern auch in nicht-transformierten Zellen vorhanden sind, kann infolge verschiedener Toleranz-Mechanismen zur Eliminierung von ZTL führen, deren T-Zell-Rezeptoren eine hohe Affinität für TAA besitzen. Entsprechend erfordert die Entwicklung effektiver Immuntherapeutika die genaue Analyse des verfügbaren T-Zell-Repertoires mit Spezifität für ein gegebenes TAA.Die Arbeit fokusierte das Tyrosinase (369-377) ZTL-Epitop, das im Komplex mit HLA-A*0201 (A2.1) auf der Zell-Oberfläche von malignen Melanomen und verschiedenen nicht-transformierten Zellen präsentiert wird. Es wurde gefunden, dass sowohl das humane als auch das murine Tyrosinase (369-377)-spezifische ZTL-Repertoire durch Selbst-Toleranz kompromittiert ist und dass diese Toleranz weder durch Verwendung einer bestimmten Peptid-Variante noch durch Interferenz mit CD4+CD25+ regulatorischen T-Zellen oder CTLA-4 umgangen werden kann. Diese Ergebnisse wurden anschließend auf ein anderes Krankheitsmodell, das Multiple Myelom (MM), adaptiert. Unter Umgehung von Selbst-Toleranz in A2.1-transgenen Mäusen wurde gezeigt, dass Transkriptionsfaktoren, die die terminale Differenzierung von B-Zellen in maligne und nicht-maligne Plasmazellen diktieren, als MM-assoziierte ZTL-Epitope dienen können.Diese Arbeit bietet einen bedeutenden und innovativen Beitrag zur Gestaltung von Tyrosinase-basierten Melanom- und MM-reaktiven Immuntherapien.
Resumo:
Until now, therapeutic vaccination of cancer patients has mainly relied on rather few T cell epitopes processed from structurally normal shared tumor antigens and presented by frequent HLA alleles. So far the design of these studies has not addressed the individuality of tumor-host interactions, which are not only determined by the antigenic tumor phenotype or the natural HLA polymorphism, but also by the individual T cell repertoire. The procedure described herein was developed to identify the preferential targets of the individual repertoire from a panel of known shared tumor-associated antigens. Lymphocytes were isolated from the peripheral blood of cancer patients or healthy donors and stimulated twice with autologous mRNA-transfected FastDC (Dauer et al., J Immunol. 170:4069, 2003). FastDC were generated from blood monocytes and separately transfected via lipofection with in vitro transcribed mRNAs encoding the panel antigens. Responder lymphocytes were tested on day 12 in a 20-hour IFN-g ELISPOT assay for recognition of 293T cells co-transfected pairwise with plasmids encoding the stimulation antigens and the respective individual’s HLA class I alleles. In a first step, stimulation parameters were optimized for the detection of anti-HCMV pp65 responses. A maximum amplification of pp65-specific CD8+ T cell responses was obtained at a rather low IL-2 concentration (25 IU/ml) and at a minimum APC-to-effector ratio of 1:10. Addition of IL-4, IL-7 or IL-15 did not substantially improve the stimulatory potential. The test was applied to the human melanoma models D05 and MZ2, in both of which multiple T cell-defined antigens had previously been identified by expression screening. Blood lymphocytes were stimulated in parallel with autologous tumor cells and with mRNA-transfected FastDC. In D05, T cell reactivities against three out of eleven epitopes induced by stimulation with tumor cells were also found after stimulation with mRNA-transfected FastDC. Two further T cell target epitopes were identified with mRNA but not with tumor cell stimulation. In MZ2, T cell responses against five distinct epitopes were detected on day 12 after stimulation with mRNA transfectants. The same responses were detectable after stimulation with tumor cells only on day 32. mRNA stimulations against 21 tumor-associated antigens in addition to HCMV pp65 were performed in four healthy individuals. In all cases, CD8+ T cells against HCMV pp65 could be expanded. Among tumor-associated antigens, only reactivity against Melan-A/MART-1 in association with HLA-A*0201 was detectable in one of the donors. The vaccination of patients with targets a priori known to be recognized by their T cell repertoire may help to improve the outcome of therapeutic vaccination.
Resumo:
This PhD thesis is focused on the study of the molecular variability of some specific proteins, part of the outer membrane of the pathogen Neisseria meningitidis, and described as protective antigens and important virulence factors. These antigens have been employed as components of the vaccine developed by Novartis Vaccines against N. meningitidis of serogroup B, and their variability in the meningococcal population is a key aspect when the effect of the vaccine is evaluated. The PhD project has led to complete three major studies described in three different manuscritps, of which two have been published and the third is in preparation. The thesis is structured in three main chapters, each of them dedicated to the three studies. The first, described in Chapter 1, is specifically dedicated to the analysis of the molecular conservation of meningococcal antigens in the genomes of all species classified in the genus Neisseria (Conservation of Meningococcal Antigens in the Genus Neisseria. A. Muzzi et al.. 2013. mBio 4 (3)). The second study, described in Chapter 2, focuses on the analysis of the presence and conservation of the antigens in a panel of bacterial isolates obtained from cases of the disease and from healthy individuals, and collected in the same year and in the same geographical area (Conservation of fHbp, NadA, and NHBA in carrier and pathogenic isolates of Neisseria meningitidis collected in the Czech Republic in 1993. A. Muzzi et al.. Manuscript in preparation). Finally, Chapter 3 describes the molecular features of the antigens in a panel of bacterial isolates collected over a period of 50 years, and representatives of the epidemiological history of meningococcal disease in the Netherlands (An Analysis of the Sequence Variability of Meningococcal fHbp, NadA and NHBA over a 50-Year Period in the Netherlands. S. Bambini et al.. 2013. PloS one e65043).
Resumo:
Krebserkrankungen gehen oft mit der Überexpression von mucinartigen Glycoproteinen auf der Zelloberfläche einher. In vielen Krebserkrankungen wird aufgrund der fehlerhaften Expression verschiedener Glycosyltransferasen das transmembranständige Glycoprotein MUC1, mit verkürzten Glycanstrukturen, überexprimiert. Das Auftreten der verschiedenen tumor-assoziierten Antigene (TACA) korreliert meist mit dem Fortschreiten des Krebs und der Metastasierung. Daher stellen TACAs interessante Zielmoleküle für die Entwicklung einer aktiven Tumorimmuntherapie zur spezifischen Behandlung von Adenokarzinomen dar. In dieser Arbeit galt das Interesse dem epithelialen Mucin MUC1, auf Basis dessen ein synthetischer Zugang zu einheitlichen Antitumorvakzinen, welche aus mucinanalogen Glyco-peptid¬konjugaten des MUC1 und Carrierproteinen bestehen, hergestellt werden sollten.rnUm eine tumorspezifische Immunantwort zu erhalten, müssen die selbst schwach immunogenen MUC1-Antigene über einen nicht-immunogenen Spacer mit einem geeigneten Trägerprotein, wie Tetanus Toxoid oder Rinderserumalbumin (BSA), verbunden werden. rnDa ein Einsatz von Glycokonjugaten in Impfstoffen durch die metabolische Labilität der O-glycosidischen Bindungen eingeschränkt ist, wurden hierzu erstmals fluorierte Vetreter von MUC1-analogen Glycopeptiden verwendet, in denen das Kohlenhydrat-Epitop durch den strategischen Einbau von Fluor¬atomen gegenüber einem raschen Abbau durch Glycosidasen geschützt werden soll. Dazu wurden auf Basis des literaturbekannten Thomsen-Friedenreich-Antigens Synthesestrategien zur Herstellung eines 2’F- und eines 2’,6’-bisfluorierten-Analogons erarbeitet. rnSchlüsselschritte in der Synthese stellten neben der elektrophilen Fluorierung eines Galactalvorläufers auch die -selektive 3-Galactosylierung des TN-Antigen-Bausteins zum 2’F- und 2’,6’-bisfluorierten-Analogons des TF-Disaccharids dar. Durch entsprechende Schutzgruppentransformationen wurden die beiden Derivate in entsprechende Glycosyl¬amino-säure-Bausteine für die Festphasensynthese überführt.rnNeben den beiden Analoga des TF-Antigens wurde auch erstmals ein 2F-Analogon des 2,6-Sialyl-T-Antigens hergestellt. Dazu wurde der entsprechende 2’F-TF-Baustein mit Sialinsäure-xanthogenat nach bereits bekannten Syntheseprotokollen umgesetzt. Aufgrund von Substanzmangel konnte die Verbindung nicht zur Synthese eines MUC1-Glycopeptid-Analogons herangezogen werden.rnDer Einbau der hergestellten Glycosylaminosäure-Bausteine erfolgte in die aus 20 Amino-säuren bestehende vollständige Wiederholungseinheit aus der tandem repeat-Sequenz des MUC1, wobei die entsprechenden Glycanseitenketten stets in Position 6 eingeführt wurden. Um die erhaltenen Glycopeptide für immunologische Studien an Carrier-Proteine anbinden zu können und so ggf. zu funktionsfähigen Impfstoff-Konjugaten zu gelangen, wurden diese stets N-terminal mit einem nicht-immunogenen Triethylenglycol-Spacer verknüpft. Die anschließende Funktionalisierung mit Quadratsäurediethylester erlaubte die spätere chemoselektive Konjugation an Trägerproteine, wie Tetanus Toxoid oder BSA.rnIn ersten immunologischen Bindungsstudien wurden die synthetisierten BSA-Glycopeptid-Konjugate mit Serum-Antikörpern aus Vakzinierungsstudien von MUC1-Tetanus Toxoid-Konjugaten, die (i) eine natürliche TF-Antigenstruktur und (ii) ein entsprechendes TF-Antigenderivat mit Fluorsubstituenten an C-6 des Galactosamin-Bausteins und C-6’ des Galactoserests tragen, untersucht.rn
Resumo:
Somatic angiotensin-converting enzyme (sACE) is crucial in cardiovascular homeostasis and displays a tissue-specific profile. Epigenetic patterns modulate genes expression and their alterations were implied in pathologies including hypertension. However, the influence of DNA methylation and chromatin condensation state on the expression of sACE is unknown. We examined whether such epigenetic mechanisms could participate in the control of sACE expression in vitro and in vivo. We identified two CpG islands in the human ace-1 gene 3 kb proximal promoter region. Their methylation abolished the luciferase activity of ace-1 promoter/reporter constructs transfected into human liver (HepG2), colon (HT29), microvascular endothelial (HMEC-1) and lung (SUT) cell lines (p < 0.001). Bisulphite sequencing revealed a cell-type specific basal methylation pattern of the ace-1 gene -1,466/+25 region. As assessed by RT-qPCR, inhibition of DNA methylation by 5-aza-2'-deoxycytidine and/or of histone deacetylation by trichostatin A highly stimulated sACE mRNA expression cell-type specifically (p < 0.001 vs. vehicle treated cells). In the rat, in vivo 5-aza-cytidine injections demethylated the ace-1 promoter and increased sACE mRNA expression in the lungs and liver (p = 0.05), but not in the kidney. In conclusion, the expression level of somatic ACE is modulated by CpG-methylation and histone deacetylases inhibition. The basal methylation pattern of the promoter of the ace-1 gene is cell-type specific and correlates to sACE transcription. DNMT inhibition is associated with altered methylation of the ace-1 promoter and a cell-type and tissue-specific increase of sACE mRNA levels. This study indicates a strong influence of epigenetic mechanisms on sACE expression.
Resumo:
Polyvalent Ig preparations, derived from the pooled plasma of thousands of healthy donors, contain a complex mix of both 'acquired' and natural antibodies directed against pathogens as well as foreign and self/auto antigens (Ag). Depending on their formulation, donor pool size, etc., liquid Ig preparations contain monomeric and dimeric IgG. The dimeric IgG fraction is thought to represent mainly idiotype-antiidiotype Ab pairs. Treatment of all IgG fractions at pH 4 effectively monomerizes the IgG dimers resulting in separated idiotype-antiidiotype Ab pairs and thus in a comparable F(ab')(2) binding site availability of the different IgG fractions. Previously, we identified an increased anti-self-reactivity within the monomerized dimer fraction. This study addressed if, among the different IgG fractions, an analogous preferential reactivity was evident in the response against different pathogen-derived protein and carbohydrate antigens. Therefore, we assessed the activity of total unseparated IgG, the monomeric and dimeric IgG fractions against antigenic structures of bacterial and viral antigens/virulence factors. All fractions showed similar reactivity to protein antigens except for exotoxin A of Pseudomonas aeruginosa, where the dimeric fraction, especially when monomerized, showed a marked increase in reactivity. This suggests that the production of antiidiotypic IgG antibodies contributes to controlling the immune response to certain categories of pathogens. In contrast, the monomeric IgG fractions showed increased reactivity towards pathogen-associated polysaccharides, classically regarded as T-independent antigens. Taken together, the differential reactivity of the IgG fractions seems to indicate a preferential segregation of antibody reactivities according to the nature of the antigen.