997 resultados para Root-cause
Resumo:
You cannot treat the symptoms of a problem without examining the cause. Anti social Behaviour by young people is a product of the society we live in today. Elements of social exclusion have affected many disadvantaged young people and have restricted their opportunity to have a good and fair quality of life. The behaviour of some young people is a consequence of the manifestation of social and economic inequalities bestowed upon them. Harsh and erratic policies will only exclude these young people further, alienating them the benefits of Irish society that other young people thrive in. the root causes of anti social behaviour must be addressed for policy to be successful and to give disadvantaged young people the best opportunity the state can offer. This study examines the underlying causes and policy responses of anti social behaviour by young people in Ireland today.This resource was contributed by The National Documentation Centre on Drug Use.
Resumo:
Key points• The literature shows general agreement about a correlation between income inequality and health/social problems. • There is less agreement about whether income inequality causes health and social problems independently of other factors, but some rigorous studies have found evidence of this. • The independent effect of income inequality on health/social problems shown in some studies looks small in statistical terms. But these studies cover whole populations, and hence a significant number of lives. • Some research suggests that inequality is particularly harmful beyond a certain threshold. Britain was below this threshold in the 1960s, 1970s and early 1980s, but rose past it in 1986–7 and has settled well above it since 1998–9. If the threshold is significant it could provide a target for policy. • Anxiety about status might explain income inequality’s effect on health and social problems. If so, inequality is harmful because it places people in a hierarchy which increases competition for status, causing stress and leading to poor health and other negative outcomes. • Not all research shows an independent effect of income inequality on health/social problems. Some highlights the role of individual income (poverty/material circumstances), culture/history, ethnicity and welfare state institutions/social policies. • The author concludes that there is a strong case for further research on income inequality and discussion of the policy implications.This resource was contributed by The National Documentation Centre on Drug Use.
Resumo:
The latest annual update on life expectancy data and all age all cause mortality rates, with data updated to 2005-07, which are used to monitor progress against Department of Health targets for overall life expectancy in England, and for the gap in life expectancy between the areas with the worst health and deprivation indicators (the Spearhead group) and the England average, was released on 13th November 2008 according to the arrangements approved by the UK Statistics Authority.
Resumo:
The latest annual update on life expectancy data and all age all cause mortality rates, with data updated to 2006-08, which are used to monitor progress against Department of Health targets for overall life expectancy in England, and for the gap in life expectancy between the areas with the worst health and deprivation indicators (the Spearhead group) and the England average, was released on 5th November 2009 according to the arrangements approved by the UK Statistics Authority. �� The key points from the latest release are: �� - The overall life expectancy and all age all cause mortality (AAACM) trends for both males and females are broadly on course to deliver the target of 78.6 years for men and 82.5 years for women by 2010 (2009-11). �� - In 2006-08, life expectancy at birth in England continued to increase for both males and females, and reached its highest level on record at 77.7 years for males and 81.9 years for females. �� - Three-year average AAACM rates for England have fallen in each period since 1995-97. �� - In 2006-08, average life expectancy at birth in the Spearhead Group was 75.8 years for males and 80.4 years for females, having increased in each period since 1995-97. �� - However, England average life expectancy at birth has increased more quickly over this period, and, in 2006-08, the relative gap ��� i.e. percentage difference - in life expectancy at birth between England and the Spearhead Group was wider than at the baseline for the target (1995-97) for both males and females. �� - For males the relative gap was 7% wider than at the baseline (compared with 4% wider in 2005-07), for females 14% wider (compared with 11% wider in 2005-07).�� �� Therefore, the target to narrow the life expectancy gap between the Spearhead Group and the England average, by at least 10% by 2010, remains challenging.��Three-year average AAACM rates for the Spearhead Group have fallen in each period since 1995-97 for both males and females. Download Mortality target monitoring (life expectancy and all-age all-cause mortality, overall and inequalities): update to include data for 2008 (PDF, 683K)Download pre-release access list (PDF, 10k)��
Resumo:
In vascular plants, the best-known feature of a differentiated endodermal cell is the "Casparian Strip" (CS). This structure refers to a highly localized cell wall impregnation in the transversal and anticlinal walls of the cell, which surrounds the cell like a belt/ring and is tightly coordinated with respect to neighboring cells. Analogous to tight junctions in animal epithelia, CS in plants act as a diffusion barrier that controls the movement of water and ions from soil into the stele. Since its first description by Robert Caspary in 1865 there have been many attempts to identify the chemical nature of the cell wall deposition in CS. Suberin, lignin, or both have been claimed to be the important components of CS in a series of different species. However, the exact chemical composition of CS has remained enigmatic. This controversy was due to the confusion and lack of knowledge regarding the precise measurement of three developmental stages of the endodermis. The CS represent only the primary stage of endodermal differentiation, which is followed by the deposition of suberin lamellae all around the cellular surface of endodermal cells (secondary developmental stage). Therefore, chemical analysis of whole roots, or even of isolated endodermal tissues, will always find both of the polymers present. It was crucial to clarify this point because this will guide our efforts to understand which cell wall biosynthetic component becomes localized in order to form the CS. The main aim of my work was to find out the major components of (early) CS, as well as their spatial and temporal development, physiological roles and relationship to barrier formation. Employing the knowledge and tools that have been accumulated over the last few years in the model plant Arabidopsis thaliana, various histological and chemical assays were used in this study. A particular feature of my work was to completely degrade, or inhibit formation of lignin and suberin biopolymers by biochemical, classical genetic and molecular approaches and to investigate its effect on CS formation and the establishment of a functional diffusion barrier. Strikingly, interference with monolignol biosynthesis abrogates CS formation and delays the formation of function diffusion barrier. In contrast, transgenic plants devoid of any detectable suberin still develop a functional CS. The combination of all these assays clearly demonstrates that the early CS polymer is made from monolignol (lignin monomers) and is composed of lignin. By contrast, suberin is formed much later as a secondary wall during development of endodermis. These early CS are functionally sufficient to block extracellular diffusion and suberin does not play important role in the establishment of early endodermal diffusion barrier. Moreover, suberin biosynthetic machinery is not present at the time of CS formation. Our study finally concludes the long-standing debate about the chemical nature of CS and opens the door to a new approach in lignin research, specifically for the identification of the components of the CS biosynthetic pathway that mediates the localized deposition of cell walls. I also made some efforts to understand the patterning and differentiation of endodermal passage cells in young roots. In the literature, passage cells are defined as a non- suberized xylem pole associated endodermal cells. Since these cells only contain the CS but not the suberin lamellae, it has been assumed that these cells may offer a continued low-resistance pathway for water and minerals into the stele. Thus far, no genes have been found to be expressed specifically in passage cells. In order to understand the patterning, differentiation, and physiological role of passage it would be crucial to identify some genes that are exclusively expressed in these cells. In order to identify such genes, I first generated fluorescent marker lines of stele-expressed transporters that have been reported to be expressed in the passage cells. My aim was to first highlight the passage cells in a non-specific way. In order to find passage cell specific genes I then adapted a two-component system based on previously published methods for gene expression profiling of individual cell types. This approach will allow us to target only the passage cells and then to study gene expression specifically in this cell type. Taken together, this preparatory work will provide an entry point to understand the formation and role of endodermal passage cells. - Chez les plantes vasculaires, la caractéristique la plus commune des cellules différentiées de l'endoderme est la présence de cadres de Caspary. Cette structure correspond à une imprégnation localisée des parties transversales et anticlinales de la paroi cellulaire. Cela donne naissance, autour de la cellule, à un anneau/cadre qui est coordonné par rapport aux cellules voisines. De manière analogue aux jonctions serrées des épithéliums chez les animaux, les cadres de Caspary agissent chez les plantes comme barrière de diffusion, contrôlant le mouvement de l'eau et des ions à travers la racine entre le sol et la stèle. Depuis leur première description par Robert Caspary en 1865, beaucoup de tentatives ont eu pour but de définir la nature chimique de ces cadres de Caspary. Après l'étude de différentes espèces végétales, à la fois la subérine, la lignine ou les deux ont été revendiquées comme étant des composants importants de ces cadres. Malgré tout, leur nature chimique exacte est restée longtemps énigmatique. Cette controverse provient de la confusion et du manque de connaissance concernant la détermination précise des trois stades de développement de l'endoderme. Les cadres de Caspary représentent uniquement le stade primaire de différentiation de l'endoderme. Celui-ci est suivi par le second stade de différentiation, la déposition de lamelles de subérine tout autour de la cellule endodermal. De ce fait, l'analyse chimique de racines entières ou de cellules d'endoderme isolées ne permet pas de séparer les stades de différentiation primaire et secondaire et aboutit donc à la présence des deux polymères. Il est également crucial de clarifier ce point dans le but de connaître quelle machinerie cellulaire localisée à la paroi cellulaire permet l'élaboration des cadres de Caspary. En utilisant les connaissances et les outils accumulés récemment grâce à la plante modèle Arabidopsis thaliana, divers techniques histologiques et chimiques ont été utilisées dans cette étude. Un point particulier de mon travail a été de dégrader ou d'inhiber complètement la formation de lignine ou de subérine en utilisant des approches de génétique classique ou moléculaire. Le but étant d'observer l'effet de l'absence d'un de ces deux polymères sur la formation des cadres de Caspary et l'établissement d'une barrière de diffusion fonctionnelle. De manière frappante, le fait d'interférer avec la voie de biosynthèse de monolignol (monomères de lignine) abolit la formation des cadres de Caspary et retarde l'élaboration d'une barrière de diffusion fonctionnelle. Par contre, des plantes transgéniques dépourvues d'une quantité détectable de subérine sont quant à elles toujours capables de développer des cadres de Caspary fonctionnels. Mises en commun, ces expériences démontrent que le polymère formant les cadres de Caspary dans la partie jeune de la racine est fait de monolignol, et que de ce fait il s'agit de lignine. La subérine, quant à elle, est formée bien plus tard durant le développement de l'endoderme, de plus il s'agit d'une modification de la paroi secondaire. Ces cadres de Caspary précoces faits de lignine suffisent donc à bloquer la diffusion extracellulaire, contrairement à la subérine. De plus, la machinerie de biosynthèse de la subérine n'est pas encore présente au moment de la formation des cadres de Caspary. Notre étude permet donc de mettre un terme au long débat concernant la nature chimique des cadres de Caspary. De plus, elle ouvre la porte à de nouvelles approches dans la recherche sur la lignine, plus particulièrement pour identifier des composants permettant la déposition localisée de ce polymère dans la paroi cellulaire. J'ai aussi fais des efforts pour mettre en évidence la formation ainsi que le rôle des cellules de passage dans les jeunes racines. Dans la littérature, les cellules de passage sont définies comme de la cellule endodermal faisant face aux pôles xylèmes et dont la paroi n'est pas subérisée. Du fait que ces cellules contiennent uniquement des cadres de Caspary et pas de lamelle de subérine, il a été supposé qu'elles ne devraient offrir que peu de résistance au passage de l'eau et des nutriments entre le sol et la stèle. Le rôle de ces cellules de passage est toujours loin d'être clair, de plus aucun gène s'exprimant spécifiquement dans ces cellules n'a été découvert à ce jour. De manière à identifier de tels gènes, j'ai tout d'abord généré des marqueurs fluorescents pour des transporteurs exprimés dans la stèle mais dont l'expression avait également été signalée dans l'endoderme, uniquement dans les cellules de passage. J'ai ensuite développé un système à deux composants basé sur des méthodes déjà publiées, visant principalement à étudier le profil d'expression génique dans un type cellulaire donné. En recoupant les gènes exprimés spécifiquement dans l'endoderme à ceux exprimés dans la stèle et les cellules de passage, il nous sera possible d'identifier le transriptome spécifique de ces cellules. Pris dans leur ensemble, ces résultats devraient donner un bon point d'entrée dans la définition et la compréhension des cellules de passage.
Resumo:
DSRs (with CIs) for All age, all cause mortality 2001-03 to 2005-07, by gender, for Counties/UAs, County quintiles, County 80/20 standardises - as in previous years - against East of England Census 2001 population.
Resumo:
In Pseudomonas fluorescens CHA0, mutation of the GacA-controlled aprA gene (encoding the major extracellular protease) or the gacA regulatory gene resulted in reduced biocontrol activity against the root-knot nematode Meloidogyne incognita during tomato and soybean infection. Culture supernatants of strain CHA0 inhibited egg hatching and induced mortality of M. incognita juveniles more strongly than did supernatants of aprA and gacA mutants, suggesting that AprA protease contributes to biocontrol.
Resumo:
Waardenburg anophthalmia syndrome, also known as microphthalmia with limb anomalies, ophthalmoacromelic syndrome, and anophthalmia-syndactyly, is a rare autosomal-recessive developmental disorder that has been mapped to 10p11.23. Here we show that this disease is heterogeneous by reporting on a consanguineous family, not linked to the 10p11.23 locus, whose two affected children have a homozygous mutation in SMOC1. Knockdown experiments of the zebrafish smoc1 revealed that smoc1 is important in eye development and that it is expressed in many organs, including brain and somites.
Resumo:
Cone-rod dystrophies are inherited dystrophies of the retina characterized by the accumulation of deposits mainly localized to the cone-rich macular region of the eye. Dystrophy can be limited to the retina or be part of a syndrome. Unlike nonsyndromic cone-rod dystrophies, syndromic cone-rod dystrophies are genetically heterogeneous with mutations in genes encoding structural, cell-adhesion, and transporter proteins. Using a genome-wide single-nucleotide polymorphism (SNP) haplotype analysis to fine map the locus and a gene-candidate approach, we identified homozygous mutations in the ancient conserved domain protein 4 gene (CNNM4) that either generate a truncated protein or occur in highly conserved regions of the protein. Given that CNNM4 is implicated in metal ion transport, cone-rod dystrophy and amelogenesis imperfecta may originate from abnormal ion homeostasis.
Resumo:
Immunoreactivity to calbindin D-28k, a vitamin D-dependent calcium-binding protein, is expressed by neuronal subpopulations of dorsal root ganglia (DRG) in the chick embryo. To determine whether the expression of this phenotypic characteristic is maintained in vitro and controlled by environmental factors, dissociated DRG cell cultures were performed under various conditions. Subpopulations of DRG cells cultured at embryonic day 10 displayed calbindin-immunoreactive cell bodies and neurites in both neuron-enriched or mixed DRG cell cultures. The number of calbindin-immunoreactive ganglion cells increased up to 7-10 days of culture independently of the changes occurring in the whole neuronal population. The presence of non-neuronal cells, which promotes the maturation of the sensory neurons, tended to reduce the percentage of calbindin-immunoreactive cell bodies. Addition of horse serum enhanced both the number of calbindin-positive neurons and the intensity of the immunostaining, but does not prevent the decline of the subpopulation of calbindin-immunoreactive neurons during the second week of culture; on the contrary, the addition of muscular extract to cultures at 10 days maintained the number of calbindin-expressing neurons. While calbindin-immunoreactive cell bodies grown in culture were small- or medium-sized, no correlation was found between cell size and immunostaining density. At the ultrastructural level, the calbindin immunoreaction was distributed throughout the neuroplasm. These results indicate that the expression of calbindin by sensory neurons grown in vitro may be modulated by horse serum-contained factors or interaction with non-neuronal cells. As distinct from horse serum, muscular extract is able to maintain the expression of calbindin by a subpopulation of DRG cells.
Resumo:
In order to establish the insecticide susceptibility status for Anopheles darlingi in Colombia, and as part of the National Network on Insecticide Resistance Surveillance, five populations of insects from three Colombian states were evaluated. Standardised WHO and CDC bottle bioassays, in addition to microplate biochemical assays, were conducted. Populations with mortality rates below 80% in the bioassays were considered resistant. All field populations were susceptible to deltamethrin, permethrin, malathion and fenitrothion. Resistance to lambda-cyhalothrin and DDT was detected in the Amé-Beté population using both bioassay methods with mortality rates of 65-75%. Enzyme levels related to insecticide resistance, including mixed function oxidases (MFO), non-specific esterases (NSE), glutathione S-transferases and modified acetylcholinesterase were evaluated in all populations and compared with a susceptible natural strain. Only mosquitoes from Amé-Beté presented significantly increased levels of both MFO and NSE, consistent with the low mortalities found in this population. The continued use of lambda-cyhalothrin for An. darlingi control in this locality has resulted in a natural resistance to this insecticide. In addition, DDT resistance is still present in this population, although this insecticide has not been used in Colombia since 1992. Increased metabolism through MFO and NSE may be involved in cross-resistance between lambda-cyhalothrin and DDT, although kdr-type nerve insensitivity cannot be discarded as a possible hypothesis. Additional research, including development of a kdr specific assay for An. darlingi should be conducted in future studies. Our data demonstrates the urgent need to develop local insecticide resistance management and surveillance programs throughout Colombia.
Resumo:
Deaths caused by systemic mycoses such as paracoccidioidomycosis, cryptococcosis, histoplasmosis, candidiasis, aspergillosis, coccidioidomycosis and zygomycosis amounted to 3,583 between 1996-2006 in Brazil. When analysed as the underlying cause of death, paracoccidioidomycosis represented the most important cause of deaths among systemic mycoses (~ 51.2%). When considering AIDS as the underlying cause of death and the systemic mycoses as associated conditions, cryptococcosis (50.9%) appeared at the top of the list, followed by candidiasis (30.2%), histoplasmosis (10.1%) and others. This mortality analysis is useful in understanding the real situation of systemic mycoses in Brazil, since there is no mandatory notification of patients diagnosed with systemic mycoses in the official health system.
Resumo:
Background: Sulfate and phosphate are both vital macronutrients required for plant growth and development. Despite evidence for interaction between sulfate and phosphate homeostasis, no transcriptional factor has yet been identified in higher plants that affects, at the gene expression and physiological levels, the response to both elements. This work was aimed at examining whether PHR1, a transcription factor previously shown to participate in the regulation of genes involved in phosphate homeostasis, also contributed to the regulation and activity of genes involved in sulfate inter-organ transport. Results: Among the genes implicated in sulfate transport in Arabidopsis thaliana, SULTR1;3 and SULTR3;4 showed up-regulation of transcripts in plants grown under phosphate-deficient conditions. The promoter of SULTR1;3 contains a motif that is potentially recognizable by PHR1. Using the phr1 mutant, we showed that SULTR1;3 up regulation following phosphate deficiency was dependent on PHR1. Furthermore, transcript up regulation was found in phosphate-deficient shoots of the phr1 mutant for SULTR2;1 and SULTR3;4, indicating that PHR1 played both a positive and negative role on the expression of genes encoding sulfate transporters. Importantly, both phr1 and sultr1;3 mutants displayed a reduction in their sulfate shoot-to-root transfer capacity compared to wild-type plants under phosphate-deficient conditions. Conclusions: This study reveals that PHR1 plays an important role in sulfate inter-organ transport, in particular on the regulation of the SULTR1;3 gene and its impact on shoot-to-root sulfate transport in phosphate-deficient plants. PHR1 thus contributes to the homeostasis of both sulfate and phosphate in plants under phosphate deficiency. Such a function is also conserved in Chlamydomonas reinhardtii via the PHR1 ortholog PSR1.