889 resultados para Robust adaptive control
Resumo:
The Alpine lake whitefish (Coregonus lavaretus) species complex is a classic example of a recent radiation, associated with colonization of the Alpine lakes following the glacial retreat (less than 15 kyr BP). They have formed a unique array of endemic lake flocks, each with one to six described sympatric species differing in morphology, diet and reproductive ecology. Here, we present a genomic investigation of the relationships between and within the lake flocks. Comparing the signal between over 1000 AFLP loci and mitochondrial control region sequence data, we use phylogenetic tree-based and population genetic methods to reconstruct the phylogenetic history of the group and to delineate the principal centres of genetic diversity within the radiation. We find significant cytonuclear discordance showing that the genomically monophyletic Alpine whitefish clade arose from a hybrid swarm of at least two glacial refugial lineages. Within this radiation, we find seven extant genetic clusters centred on seven lake systems. Most interestingly, we find evidence of sympatric speciation within and parallel evolution of equivalent phenotypes among these lake systems. However, we also find the genetic signature of human-mediated gene flow and diversity loss within many lakes, highlighting the fragility of recent radiations.
Resumo:
The three-spined stickleback is a widespread Holarctic species complex that radiated from the sea into freshwaters after the retreat of the Pleistocene ice sheets. In Switzerland, sticklebacks were absent with the exception of the far northwest, but different introduced populations have expanded to occupy a wide range of habitats since the late 19th century. A well-studied adaptive phenotypic trait in sticklebacks is the number of lateral plates. With few exceptions, freshwater and marine populations in Europe are fixed for either the low plated phenotype or the fully plated phenotype, respectively. Switzerland, in contrast, harbours in close proximity the full range of phenotypic variation known from across the continent. We addressed the phylogeographic origins of Swiss sticklebacks using mitochondrial partial cytochrome b and control region sequences. We found only five different haplotypes but these originated from three distinct European regions, fixed for different plate phenotypes. These lineages occur largely in isolation at opposite ends of Switzerland, but co-occur in a large central part. Across the country, we found a strong correlation between a microsatellite linked to the high plate ectodysplasin allele and the mitochondrial haplotype from a region where the fully plated phenotype is fixed. Phylogenomic and population genomic analysis of 481 polymorphic amplified fragment length polymorphism loci indicate genetic admixture in the central part of the country. The same part of the country also carries elevated within-population phenotypic variation. We conclude that during the recent invasive range expansion of sticklebacks in Switzerland, adaptive and neutral between-population genetic variation was converted into within-population variation, raising the possibility that hybridization between colonizing lineages contributed to the ecological success of sticklebacks in Switzerland.
Resumo:
Prediction of glycemic profile is an important task for both early recognition of hypoglycemia and enhancement of the control algorithms for optimization of insulin infusion rate. Adaptive models for glucose prediction and recognition of hypoglycemia based on statistical and artificial intelligence techniques are presented.
Resumo:
Plasmacytoid dendritic cells (pDCs) are the major producers of type I IFN in response to viral infection and have been shown to direct both innate and adaptive immune responses in vitro. However, in vivo evidence for their role in viral infection is lacking. We evaluated the contribution of pDCs to acute and chronic virus infection using the feeble mouse model of pDC functional deficiency. We have previously demonstrated that feeble mice have a defect in TLR ligand sensing. Although pDCs were found to influence early cytokine secretion, they were not required for control of viremia in the acute phase of the infection. However, T cell priming was deficient in the absence of functional pDCs and the virus-specific immune response was hampered. Ultimately, infection persisted in feeble mice. We conclude that pDCs are likely required for efficient T cell priming and subsequent viral clearance. Our data suggest that reduced pDC functionality may lead to chronic infection.
Resumo:
Investigation uses simulation to explore the inherent tradeoffs ofcontrolling high-speed and highly robust walking robots while minimizing energy consumption. Using a novel controller which optimizes robustness, energy economy, and speed of a simulated robot on rough terrain, the user can adjust their priorities between these three outcome measures and systematically generate a performance curveassessing the tradeoffs associated with these metrics.
Resumo:
The time-course of dark adaptation provides valuable insights into the function and interactions between the rod and cone pathways in the retina. Here we describe a technique that uses the flash electroretinogram (ERG) response to probe the functional integrity of the cone and rod pathways during the dynamic process of dark adaptation in the mouse. Retinal sensitivity was estimated from the stimulus intensity required to maintain a 30 microV criterion b-wave response during a 40 min period of dark adaptation. When tracked in this manner, dark adaptation functions in WT mice depended upon the bleaching effects of initial background adaptation conditions. Altered dark adaptation functions, commensurate with the functional deficit were recorded in pigmented mice that lacked cone function (Gnat2 ( cplf3 )) and in WT mice injected with a toxin, sodium iodate (NaIO(3)), which targets the retinal pigment epithelium and also has downstream effects on photoreceptors. These data demonstrate that this adaptive tracking procedure measures retinal sensitivity and the contributions of the rod and/or cone pathways during dark adaptation in both WT control and mutant mice.
Resumo:
Complex human diseases are a major challenge for biological research. The goal of my research is to develop effective methods for biostatistics in order to create more opportunities for the prevention and cure of human diseases. This dissertation proposes statistical technologies that have the ability of being adapted to sequencing data in family-based designs, and that account for joint effects as well as gene-gene and gene-environment interactions in the GWA studies. The framework includes statistical methods for rare and common variant association studies. Although next-generation DNA sequencing technologies have made rare variant association studies feasible, the development of powerful statistical methods for rare variant association studies is still underway. Chapter 2 demonstrates two adaptive weighting methods for rare variant association studies based on family data for quantitative traits. The results show that both proposed methods are robust to population stratification, robust to the direction and magnitude of the effects of causal variants, and more powerful than the methods using weights suggested by Madsen and Browning [2009]. In Chapter 3, I extended the previously proposed test for Testing the effect of an Optimally Weighted combination of variants (TOW) [Sha et al., 2012] for unrelated individuals to TOW &ndash F, TOW for Family &ndash based design. Simulation results show that TOW &ndash F can control for population stratification in wide range of population structures including spatially structured populations, is robust to the directions of effect of causal variants, and is relatively robust to percentage of neutral variants. In GWA studies, this dissertation consists of a two &ndash locus joint effect analysis and a two-stage approach accounting for gene &ndash gene and gene &ndash environment interaction. Chapter 4 proposes a novel two &ndash stage approach, which is promising to identify joint effects, especially for monotonic models. The proposed approach outperforms a single &ndash marker method and a regular two &ndash stage analysis based on the two &ndash locus genotypic test. In Chapter 5, I proposed a gene &ndash based two &ndash stage approach to identify gene &ndash gene and gene &ndash environment interactions in GWA studies which can include rare variants. The two &ndash stage approach is applied to the GAW 17 dataset to identify the interaction between KDR gene and smoking status.
Resumo:
A novel solution to the long standing issue of chip entanglement and breakage in metal cutting is presented in this dissertation. Through this work, an attempt is made to achieve universal chip control in machining by using chip guidance and subsequent breakage by backward bending (tensile loading of the chip's rough top surface) to effectively control long continuous chips into small segments. One big limitation of using chip breaker geometries in disposable carbide inserts is that the application range is limited to a narrow band depending on cutting conditions. Even within a recommended operating range, chip breakers do not function effectively as designed due to the inherent variations of the cutting process. Moreover, for a particular process, matching the chip breaker geometry with the right cutting conditions to achieve effective chip control is a very iterative process. The existence of a large variety of proprietary chip breaker designs further exacerbates the problem of easily implementing a robust and comprehensive chip control technique. To address the need for a robust and universal chip control technique, a new method is proposed in this work. By using a single tool top form geometry coupled with a tooling system for inducing chip breaking by backward bending, the proposed method achieves comprehensive chip control over a wide range of cutting conditions. A geometry based model is developed to predict a variable edge inclination angle that guides the chip flow to a predetermined target location. Chip kinematics for the new tool geometry is examined via photographic evidence from experimental cutting trials. Both qualitative and quantitative methods are used to characterize the chip kinematics. Results from the chip characterization studies indicate that the chip flow and final form show a remarkable consistency across multiple levels of workpiece and tool configurations as well as cutting conditions. A new tooling system is then designed to comprehensively break the chip by backward bending. Test results with the new tooling system prove that by utilizing the chip guidance and backward bending mechanism, long continuous chips can be more consistently broken into smaller segments that are generally deemed acceptable or good chips. It is found that the proposed tool can be applied effectively over a wider range of cutting conditions than present chip breakers thus taking possibly the first step towards achieving universal chip control in machining.
Resumo:
Zur Sicherstellung einer schnellen und flexiblen Anpassung an sich ändernde Anforderungen sind innerbetriebliche Materialbereitstellungskonzepte in immer stärkerem Maße zu flexibilisieren. Hierdurch kann die Erreichung logistischer Ziele in einem dynamischen Produktionsumfeld gesteigert werden. Der Beitrag stellt ein Konzept für eine adaptive Materialbereitstellung in flexiblen Produktionssystemen auf Grundlage einer agentenbasierten Transportplanung und -steuerung vor. Der Fokus liegt hierbei auf der Planung und Steuerung der auf Basis von Materialbedarfsmeldungen ausgelösten innerbetrieblichen Transporte. Neben Pendeltouren zur Versorgung des Produktionssystems findet auch das dynamische Pickup-and-Delivery-Problem Berücksichtigung. Das vorgestellte Konzept ist an den Anforderungen selbstorganisierender Produktionsprozesse ausgerichtet.
Resumo:
Recent studies suggest that computerized cognitive training leads to improved performance in related but untrained tasks (i.e. transfer effects). However, most study designs prevent disentangling which of the task components are necessary for transfer. In the current study, we examined whether training on two variants of the adaptive dual n-back task would affect untrained task performance and the corresponding electrophysiological event-related potentials (ERPs). Forty three healthy young adults were trained for three weeks with a high or low interference training variant of the dual n-back task, or they were assigned to a passive control group. While n-back training with high interference led to partial improvements in the Attention Network Test (ANT), we did not find transfer to measures of working memory and fluid intelligence. ERP analysis in the n-back task and the ANT indicated overlapping processes in the P3 time range. Moreover, in the ANT, we detected increased parietal activity for the interference training group alone. In contrast, we did not find electrophysiological differences between the low interference training and the control group. These findings suggest that training on an interference control task leads to higher electrophysiological activity in the parietal cortex, which may be related to improvements in processing speed, attentional control, or both.
Resumo:
The goal of this roadmap paper is to summarize the state-of-the-art and identify research challenges when developing, deploying and managing self-adaptive software systems. Instead of dealing with a wide range of topics associated with the field, we focus on four essential topics of self-adaptation: design space for self-adaptive solutions, software engineering processes for self-adaptive systems, from centralized to decentralized control, and practical run-time verification & validation for self-adaptive systems. For each topic, we present an overview, suggest future directions, and focus on selected challenges. This paper complements and extends a previous roadmap on software engineering for self-adaptive systems published in 2009 covering a different set of topics, and reflecting in part on the previous paper. This roadmap is one of the many results of the Dagstuhl Seminar 10431 on Software Engineering for Self-Adaptive Systems, which took place in October 2010.
Resumo:
The paper presents a link layer stack for wireless sensor networks, which consists of the Burst-aware Energy-efficient Adaptive Medium access control (BEAM) and the Hop-to-Hop Reliability (H2HR) protocol. BEAM can operate with short beacons to announce data transmissions or include data within the beacons. Duty cycles can be adapted by a traffic prediction mechanism indicating pending packets destined for a node and by estimating its wake-up times. H2HR takes advantage of information provided by BEAM such as neighbour information and transmission information to perform per-hop congestion control. We justify the design decisions by measurements in a real-world wireless sensor network testbed and compare the performance with other link layer protocols.
Resumo:
This paper is a summary of the main contribu- tions of the PhD thesis published in [1]. The main research contributions of the thesis are driven by the research question how to design simple, yet efficient and robust run-time adaptive resource allocation schemes within the commu- nication stack of Wireless Sensor Network (WSN) nodes. The thesis addresses several problem domains with con- tributions on different layers of the WSN communication stack. The main contributions can be summarized as follows: First, a a novel run-time adaptive MAC protocol is intro- duced, which stepwise allocates the power-hungry radio interface in an on-demand manner when the encountered traffic load requires it. Second, the thesis outlines a metho- dology for robust, reliable and accurate software-based energy-estimation, which is calculated at network run- time on the sensor node itself. Third, the thesis evaluates several Forward Error Correction (FEC) strategies to adap- tively allocate the correctional power of Error Correcting Codes (ECCs) to cope with timely and spatially variable bit error rates. Fourth, in the context of TCP-based communi- cations in WSNs, the thesis evaluates distributed caching and local retransmission strategies to overcome the perfor- mance degrading effects of packet corruption and trans- mission failures when transmitting data over multiple hops. The performance of all developed protocols are eval- uated on a self-developed real-world WSN testbed and achieve superior performance over selected existing ap- proaches, especially where traffic load and channel condi- tions are suspect to rapid variations over time.
Resumo:
We propose a method that robustly combines color and feature buffers to denoise Monte Carlo renderings. On one hand, feature buffers, such as per pixel normals, textures, or depth, are effective in determining denoising filters because features are highly correlated with rendered images. Filters based solely on features, however, are prone to blurring image details that are not well represented by the features. On the other hand, color buffers represent all details, but they may be less effective to determine filters because they are contaminated by the noise that is supposed to be removed. We propose to obtain filters using a combination of color and feature buffers in an NL-means and cross-bilateral filtering framework. We determine a robust weighting of colors and features using a SURE-based error estimate. We show significant improvements in subjective and quantitative errors compared to the previous state-of-the-art. We also demonstrate adaptive sampling and space-time filtering for animations.
Resumo:
Ventricular assist devices (VADs) are blood pumps that offer an option to support the circulation of patients with severe heart failure. Since a failing heart has a remaining pump function, its interaction with the VAD influences the hemodynamics. Ideally, the heart's action is taken into account for actuating the device such that the device is synchronized to the natural cardiac cycle. To realize this in practice, a reliable real-time algorithm for the automatic synchronization of the VAD to the heart rate is required. This paper defines the tasks such an algorithm needs to fulfill: the automatic detection of irregular heart beats and the feedback control of the phase shift between the systolic phases of the heart and the assist device. We demonstrate a possible solution to these problems and analyze its performance in two steps. First, the algorithm is tested using the MIT-BIH arrhythmia database. Second, the algorithm is implemented in a controller for a pulsatile and a continuous-flow VAD. These devices are connected to a hybrid mock circulation where three test scenarios are evaluated. The proposed algorithm ensures a reliable synchronization of the VAD to the heart cycle, while being insensitive to irregularities in the heart rate.