992 resultados para Robot learning


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The process of Competences Recognition, Validation and Certification , also known as Accreditation of Prior Learning (APL), is an innovative means of attaining school certificates for individuals without an academic background. The main objective of this process is to validate what people have learned in informal contexts, in order to attribute academic certificates. With the increasing interest of the qualification of workers and governmental support, more and more Portuguese organizations promote this process within their facilities and their work hours. This study explores the relationship between the promotion of this Human Resource Development Programme and employee’s attitudes (Job Satisfaction and Organizational Commitment) and behaviours (Extra-role Organizational Citizenship Behaviours) towards the organization they work for. Results of a cross-sectional survey of Portuguese Industrial Workers (N=135) showed that statistical significant results are in the higher levels of Voice Behaviours (a dimension of Extra-role Organizational Citizenship Behaviour in the groups of workers who were involved or had graduated from the firm promoted APL process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chapter in Merrill, Barbara (ed.) (2009) Learning to Change? The Role of Identity and Learning Careers in Adult Education. Hamburg: Peter Lang Publishers. URL: http://www.peterlang.com/ index.cfm?vID=58279&vLang=E&vHR=1&vUR=2&vUUR=1

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Informática

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia e Gestão Industrial

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ISCAP’s Information Systems Department is composed of about twenty teachers who have, for several years, been using an e-learning environment (Moodle) combined with traditional assessment. A new e-assessment strategy was implemented recently in order to evaluate a practical topic, the use of spreadsheets to solve management problems. This topic is common to several courses of different undergraduate degree programs. Being e-assessment an outstanding task regarding theoretical topics, it becomes even more challenging when the topics under evaluation are practical. In order to understand the implications of this new type of assessment from the viewpoint of the students, questionnaires and interviews were undertaken. In this paper the analysis of the questionnaires are presented and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal of this EPS@ISEP project proposed in the Spring of 2014 was to develop a flapping wing flying robot. The project was embraced by a multinational team composed of four students from different countries and fields of study. The team designed and implemented a robot inspired by a biplane design, constructed from lightweight materials and battery powered. The prototype, called MyBird, was built with a 250 € budget, reuse existing materials as well as low cost solutions. Although the team's initial idea was to build a light radio controlled robot, time limitations along with setbacks involving the required electrical components led to a light but not radio controlled prototype. The team, from the experience gathered, made a number of future improvement suggestions, namely, the addition of radio control and a camera and the adoption of articulated monoplane design instead of the current biplane design for the wings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the development of a fish-like robot called Bro-Fish. Bro-Fish aims to be an educational toy dedicated to teaching mechanics, programming and the physics of floating objects to youngsters. The underlying intention is to awaken the interest of children for technology, especially biomimetic (biologically inspired) approaches, in order to promote sustainability and raise the level of ecological awareness. The main focus of this project was to create a robot with carangiform locomotion and controllable swimming, providing the opportunity to customize parts and experiment with the physics of floating objects. Therefore, the locomotion principles of fishes and mechanisms developed in related projects were analysed. Inspired by this background knowledge, a prototype was designed and implemented. The main achievement is the new tail mechanism that propels the robot. The tail resembles the undulation motion of fish bodies and is actuated in an innovative way, triggered by an elegant movement of a rotating helicoidal. First experimental tests revealed the potential of the proposed methodology to effectively generate forward propulsion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the development of a fish-like robot called Bro-Fish. Bro-Fish aims to be an educational toy dedicated to teaching mechanics, programming and the physics of floating objects to youngsters. The underlying intention is to awaken the interest of children for technology, especially biomimetic (biologically inspired) approaches, in order to promote sustainability and raise the level of ecological awareness. The main focus of this project was to create a robot with carangiform locomotion and controllable swimming, providing the opportunity to customize parts and experiment with the physics of floating objects. Therefore, the locomotion principles of fishes and mechanisms developed in related projects were analysed. Inspired by this background knowledge, a prototype was designed and implemented. The main achievement is the new tail mechanism that propels the robot. The tail resembles the undulation motion of fish bodies and is actuated in an innovative way, triggered by an elegant movement of a rotating helicoidal. First experimental tests revealed the potential of the proposed methodology to effectively generate forward propulsion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trabalho de Projecto apresentado para cumprimento dos requisitos necessários à obtenção do grau de Mestre em Gestão de Sistemas e-Learning

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Teaching robotics to students at the beginning of their studies has become a huge challenge. Simulation environments can be an effective solution to that challenge where students can interact with simulated robots and have the first contact with robotic constraints. From our previous experience with simulation environments it was possible to observe that students with lower background knowledge in robotics where able to deal with a limited number of constraints, implement a simulated robotic platform and study several sensors. The question is: after this first phase what should be the best approach? Should the student start developing their own hardware? Hardware development is a very important part of an engineer's education but it can also be a difficult phase that could lead to discouragement and loss of motivation in some students. Considering the previous constraints and first year engineering students’ high abandonment rate it is important to develop teaching strategies to deal with this problem in a feasible way. The solution that we propose is the integration of a low-cost standard robotic platform WowWee Rovio as an intermediate solution between the simulation phase and the stage where the students can develop their own robots. This approach will allow the students to keep working in robotic areas such as: cooperative behaviour, perception, navigation and data fusion. The propose approach proved to be a motivation step not only for the students but also for the teachers. Students and teachers were able to reach an agreement between the level of demand imposed by the teachers and satisfaction/motivation of the students.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a framework for a robotic production line simulation learning environment using Autonomous Ground Vehicles (AGV). An eLearning platform is used as interface with the simulator. The objective is to introduce students to the production robotics area using a familiar tool, an eLearning platform, and a framework that simulates a production line using AGVs. This framework allows students to learn about robotics but also about several areas of industrial management engineering without requiring an extensive prior knowledge on the robotics area. The robotic production line simulation learning environment simulates a production environment using AGVs to transport materials to and from the production line. The simulator allows students to validate the AGV dynamics and provides information about the whole materials supplying system which includes: supply times, route optimization and inventory management. The students are required to address several topics such as: sensors, actuators, controllers and an high level management and optimization software. This simulator was developed with a known open source tool from robotics community: Player/Stage. This tool was extended with several add-ons so that students can be able to interact with a complex simulation environment. These add-ons include an abstraction communication layer that performs events provided by the database server which is programmed by the students. An eLearning platform is used as interface between the students and the simulator. The students can visualize the effects of their instructions/programming in the simulator that they can access via the eLearning platform. The proposed framework aims to allow students from different backgrounds to fully experience robotics in practice by suppressing the huge gap between theory and practice that exists in robotics. Using an eLearning platform eliminates installation problems that can occur from different computers software distribution and makes the simulator accessible by all students at school and at home.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dragonflies demonstrate unique and superior flight performances than most of the other insect species and birds. They are equipped with two pairs of independently controlled wings granting an unmatchable flying performance and robustness. In this paper it is studied the dynamics of a dragonfly-inspired robot. The system performance is analyzed in terms of time response and robustness. The development of computational simulation based on the dynamics of the robotic dragonfly allows the test of different control algorithms. We study different movement, the dynamics and the level of dexterity in wing motion of the dragonfly. The results are positive for the construction of flying platforms that effectively mimic the kinematics and dynamics of dragonflies and potentially exhibit superior flight performance than existing flying platforms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

6th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, Catania, Italy, 17-19 September