948 resultados para Resource Planning
Resumo:
Constructing highways in dense urban areas is always a challenge. In Sao Paulo Metropolitan Region, heavy truck traffic contributes to clog streets and expressways alike. As part of the traffic neither originates nor head to the region, a peripheral highway has been proposed to reduce traffic problems. This project called Rodoanel, is an expressway approximately 175 km long. The fact that the projected south and north sections would cross catchments that supply most of the metropolis water demand was strongly disputed and made the environmental permitting process particularly difficult. The agency in charge commissioned a strategic environmental assessment (SEA) of a revamped project, and called it the Rodoanel Programme. However, the SEA report failed to satisfactorily take account of significant strategic issues. Among these, the highway potential effect of inducing urban sprawl over water protection zones is the most critical issue, as it emerged later as a hurdle to project licensing. Conclusion is that, particularly where no agreed-upon framework for SEA exists, when vertical tiering with downstream project EIA is sought, then a careful scoping of strategic issues is more than necessary. If an agreement on `what is strategic` is not reached and not recognized by influential stakeholders, then the unsettled conflicts will be transferred to project EIA. In such a context, SEA will have added another loop to the usually long road to project approval. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
Simulated annealing (SA) is an optimization technique that can process cost functions with degrees of nonlinearities, discontinuities and stochasticity. It can process arbitrary boundary conditions and constraints imposed on these cost functions. The SA technique is applied to the problem of robot path planning. Three situations are considered here: the path is represented as a polyline; as a Bezier curve; and as a spline interpolated curve. In the proposed SA algorithm, the sensitivity of each continuous parameter is evaluated at each iteration increasing the number of accepted solutions. The sensitivity of each parameter is associated to its probability distribution in the definition of the next candidate. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This work presents a method for predicting resource availability in opportunistic grids by means of use pattern analysis (UPA), a technique based on non-supervised learning methods. This prediction method is based on the assumption of the existence of several classes of computational resource use patterns, which can be used to predict the resource availability. Trace-driven simulations validate this basic assumptions, which also provide the parameter settings for the accurate learning of resource use patterns. Experiments made with an implementation of the UPA method show the feasibility of its use in the scheduling of grid tasks with very little overhead. The experiments also demonstrate the method`s superiority over other predictive and non-predictive methods. An adaptative prediction method is suggested to deal with the lack of training data at initialization. Further adaptative behaviour is motivated by experiments which show that, in some special environments, reliable resource use patterns may not always be detected. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
Genetic variation and environmental heterogeneity fundamentally shape the interactions between plants of the same species. According to the resource partitioning hypothesis, competition between neighbors intensifies as their similarity increases. Such competition may change in response to increasing supplies of limiting resources. We tested the resource partitioning hypothesis in stands of genetically identical (clone-origin) and genetically diverse (seed-origin) Eucalyptus trees with different water and nutrient supplies, using individual-based tree growth models. We found that genetic variation greatly reduced competitive interactions between neighboring trees, supporting the resource partitioning hypothesis. The importance of genetic variation for Eucalyptus growth patterns depended strongly on local stand structure and focal tree size. This suggests that spatial and temporal variation in the strength of species interactions leads to reversals in the growth rank of seed-origin and clone-origin trees. This study is one of the first to experimentally test the resource partitioning hypothesis for intergenotypic vs. intragenotypic interactions in trees. We provide evidence that variation at the level of genes, and not just species, is functionally important for driving individual and community-level processes in forested ecosystems.
Resumo:
Market-based transmission expansion planning gives information to investors on where is the most cost efficient place to invest and brings benefits to those who invest in this grid. However, both market issue and power system adequacy problems are system planers’ concern. In this paper, a hybrid probabilistic criterion of Expected Economical Loss (EEL) is proposed as an index to evaluate the systems’ overall expected economical losses during system operation in a competitive market. It stands on both investors’ and planner’s point of view and will further improves the traditional reliability cost. By applying EEL, it is possible for system planners to obtain a clear idea regarding the transmission network’s bottleneck and the amount of losses arises from this weak point. Sequentially, it enables planners to assess the worth of providing reliable services. Also, the EEL will contain valuable information for moneymen to undertake their investment. This index could truly reflect the random behaviors of power systems and uncertainties from electricity market. The performance of the EEL index is enhanced by applying Normalized Coefficient of Probability (NCP), so it can be utilized in large real power systems. A numerical example is carried out on IEEE Reliability Test System (RTS), which will show how the EEL can predict the current system bottleneck under future operational conditions and how to use EEL as one of planning objectives to determine future optimal plans. A well-known simulation method, Monte Carlo simulation, is employed to achieve the probabilistic characteristic of electricity market and Genetic Algorithms (GAs) is used as a multi-objective optimization tool.
Resumo:
The reconstruction of power industries has brought fundamental changes to both power system operation and planning. This paper presents a new planning method using multi-objective optimization (MOOP) technique, as well as human knowledge, to expand the transmission network in open access schemes. The method starts with a candidate pool of feasible expansion plans. Consequent selection of the best candidates is carried out through a MOOP approach, of which multiple objectives are tackled simultaneously, aiming at integrating the market operation and planning as one unified process in context of deregulated system. Human knowledge has been applied in both stages to ensure the selection with practical engineering and management concerns. The expansion plan from MOOP is assessed by reliability criteria before it is finalized. The proposed method has been tested with the IEEE 14-bus system and relevant analyses and discussions have been presented.
Resumo:
A framework for and overview of the key elements of language planning is presented covering status planning, corpus planning, language-in-education planning, prestige planning and critical approaches to language planning. Within each of these areas, key articles outlining important recent directions are discussed indicating the field’s new found sense of vitality.
Resumo:
Globalisation, increasing complexity, and the need to address triple-bottom line sustainability has seen the proliferation of Learning Organisations (LO) who, by definition, have the capacity to anticipate environmental changes and economic opportunities and adapt accordingly. Such organisations use system dynamics modelling (SDM) for both strategic planning and the promotion of organisational learning. Although SDM has been applied in the context of tourism destination management for predictive reasons, the current literature does not analyse or recognise how this could be used as a foundation for an LO. This study introduces the concept of the Learning Tourism Destinations (LTD) and discusses, on the basis of a review of 6 case studies, the potential of SDM as a tool for the implementation and enhancement of collective learning processes. The results reveal that SDM is capable of promoting communication between stakeholders and stimulating organisational learning. It is suggested that the LTD approach be further utilised and explored.