948 resultados para Reinforcement from drinking


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plants are sessile organisms and have evolved to tolerate a constantly changing environment. After the onset of different stress conditions, calcineurin B-like (CBL) proteins can sense calcium signals and activate CBL-interacting protein kinase (CIPK) proteins, which can phosphorylate downstream proteins to reestablish plant homeostasis. Previous studies in the bioenergy crop sugarcane showed that the ScCIPK8 gene is induced by drought stress and is also related to sucrose content. Here, we have characterized the protein-protein interactions of ScCIPK8 with six CBL proteins (ScCBL1, ScCBL2, ScCBL3, ScCBL6, ScCBL9, and ScCBL10). Yeast two-hybrid assays showed that ScCIPK8 interacts with ScCBL1, ScCBL3, and ScCBL6. Bimolecular fluorescence complementation assays confirmed in planta the interactions that were observed in yeast cells. These findings give insights on the regulatory networks related to sugar accumulation and drought stress responses in sugarcane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recombinant Rhizopus oryzae lipase (1-3 positional selective), immobilized on Relizyme OD403, has been applied to the production of biodiesel using single cell oil from Candida sp. LEB-M3 growing on glycerol from biodiesel process. The composition of microbial oil is quite similar in terms of saponifiable lipids than olive oil, although with a higher amount of saturated fatty acids. The reaction was carried out in a solvent system, and n-hexane showed the best performance in terms of yield and easy recovery. The strategy selected for acyl acceptor addition was a stepwise methanol addition using crude and neutralized single cell oil, olive oil and oleic acid as substrates. A FAMEs yield of 40.6% was obtained with microbial oils lower than olive oil 54.3%. Finally in terms of stability, only a lost about 30% after 6 reutilizations were achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to evaluate the microscopic structure and chemical composition of titanium bone plates and screws retrieved from patients with a clinical indication and to relate the results to the clinical conditions associated with the removal of these devices. Osteosynthesis plates and screws retrieved from 30 patients between January 2010 and September 2013 were studied by metallographic, gas, and energy dispersive X-ray (EDX) analyses and the medical records of these patients were reviewed. Forty-eight plates and 238 screws were retrieved. The time elapsed between plate and screw insertion and removal ranged between 11 days and 10 years. Metallographic analysis revealed that all the plates were manufactured from commercially pure titanium (CP-Ti). The screw samples analyzed consisted of Ti-6Al-4V alloy, except four samples, which consisted of CP-Ti. Titanium plates studied by EDX analysis presented greater than 99.7% titanium by mass. On gas analysis of Ti-6Al-4V screws, three samples were outside the standard values. One CP-Ti screw sample and one plate sample also presented an oxygen analysis value above the standard. The results indicated that the physical properties and chemical compositions of the plates and screws did not correspond with the need to remove these devices or the time of retention.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitric oxide (NO)-mediated vasodilation plays a key role in gastric mucosal defense, and NO-donor drugs may protect against diseases associated with gastric mucosal blood flow (GMBF) deficiencies. In this study, we used the ex vivo gastric chamber method and Laser Doppler Flowmetry to characterize the effects of luminal aqueous NO-donor drug S-nitroso-N-acetylcysteine (SNAC) solution administration compared to aqueous NaNO2 and NaNO3 solutions (pH 7.4) on GMBF in Sprague-Dawley rats. SNAC solutions (600 μM and 12 mM) led to a rapid threefold increase in GMBF, which was maintained during the incubation of the solutions with the gastric mucosa, while NaNO2 or NaNO3 solutions (12 mM) did not affect GMBF. SNAC solutions (600 μM and 12 mM) spontaneously released NO at 37 °C at a constant rate of 0.3 or 14 nmol·mL-1·min-1, respectively, while NaNO2 (12 mM) released NO at a rate of 0.06 nmol·mL-1·min-1 and NaNO3 (12 mM) did not release NO. These results suggest that the SNAC-induced GMBF increase is due to their higher rates of spontaneous NO release compared to equimolar NaNO2 solutions. Taken together, our data indicate that oral SNAC administration is a potential approach for gastric acid-peptic disorder prevention and treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multidrug-resistant microbial infections represent an exponentially growing problem affecting communities worldwide. Photodynamic therapy is a promising treatment based on the combination of light, oxygen, and a photosensitizer that leads to reactive oxygen species production, such as superoxide (type I mechanism) and singlet oxygen (type II mechanism) that cause massive oxidative damage and consequently the host cell death. Indigofera genus has gained considerable interest due its mutagenic, cytotoxic, and genotoxic activity. Therefore, this study was undertaken to investigate the effect of crude extracts, alkaloidal fraction, and isolated substance derived from Indigofera truxillensis in photodynamic antimicrobial chemotherapy on the viability of bacteria and yeast and evaluation of mechanisms involved. Our results showed that all samples resulted in microbial photoactivation in subinhibitory concentration, with indigo alkaloid presenting a predominant photodynamic action through type I mechanism. The use of CaCl2 and MgCl2 as cell permeabilizing additives also increased gram-negative bacteria susceptibility to indigo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although Brazil is the third largest fruit producer in the world, several specimens consumed are not well studied from the chemical viewpoint, especially for quantitative analysis. For this reason and the crescent employment of mass spectrometry (MS) techniques in food science we selected twenty-two phenolic compounds with important biological activities and developed an ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method using electrospray (ESI) in negative ion mode aiming their quantification in largely consumed Brazilian fruits (açaí-do-Amazonas, acerola, cashew apple, camu-camu, pineapple and taperebá). Multiple reaction monitoring (MRM) was applied and the selection of proper product ions for each transition assured high selectivity. Linearity (0.99580%), precision (CV<20%) and extraction recovery rate (>80%) were satisfactory and showed that the method provides an efficient protocol to analyze phenolic compounds in fruit pulp extracts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new PLA2 (Bp-13) was purified from Bothrops pauloensis snake venom after a single chromatographic step of RP-HPLC on μ-Bondapak C-18. Amino acid analysis showed a high content of hydrophobic and basic amino acids and 14 half-cysteine residues. The N-terminal sequence showed a high degree of homology with basic Asp49 PLA2 myotoxins from other Bothrops venoms. Bp-13 showed allosteric enzymatic behavior and maximal activity at pH 8.1, 36°-45°C. Full Bp-13 PLA2 activity required Ca(2+); its PLA2 activity was inhibited by Mg(2+), Mn(2+), Sr(2+), and Cd(2+) in the presence and absence of 1 mM Ca(2+). In the mouse phrenic nerve-diaphragm (PND) preparation, the time for 50% paralysis was concentration-dependent (P < 0.05). Both the replacement of Ca(2+) by Sr(2+) and temperature lowering (24°C) inhibited the Bp-13 PLA2-induced twitch-tension blockade. Bp-13 PLA2 inhibited the contractile response to direct electrical stimulation in curarized mouse PND preparation corroborating its contracture effect. In biventer cervicis preparations, Bp-13 induced irreversible twitch-tension blockade and the KCl evoked contracture was partially, but significantly, inhibited (P > 0.05). The main effect of this new Asp49 PLA2 of Bothrops pauloensis venom is on muscle fiber sarcolemma, with avian preparation being less responsive than rodent preparation. The study enhances biochemical and pharmacological characterization of B. pauloensis venom.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neks are serine-threonine kinases that are similar to NIMA, a protein found in Aspergillus nidulans which is essential for cell division. In humans there are eleven Neks which are involved in different biological functions besides the cell cycle control. Nek4 is one of the largest members of the Nek family and has been related to the primary cilia formation and in DNA damage response. However, its substrates and interaction partners are still unknown. In an attempt to better understand the role of Nek4, we performed an interactomics study to find new biological processes in which Nek4 is involved. We also described a novel Nek4 isoform which lacks a region of 46 amino acids derived from an insertion of an Alu sequence and showed the interactomics profile of these two Nek4 proteins. Isoform 1 and isoform 2 of Nek4 were expressed in human cells and after an immunoprecipitation followed by mass spectrometry, 474 interacting proteins were identified for isoform 1 and 149 for isoform 2 of Nek4. About 68% of isoform 2 potential interactors (102 proteins) are common between the two Nek4 isoforms. Our results reinforce Nek4 involvement in the DNA damage response, cilia maintenance and microtubule stabilization, and raise the possibility of new functional contexts, including apoptosis signaling, stress response, translation, protein quality control and, most intriguingly, RNA splicing. We show for the first time an unexpected difference between both Nek4 isoforms in RNA splicing control. Among the interacting partners, we found important proteins such as ANT3, Whirlin, PCNA, 14-3-3ε, SRSF1, SRSF2, SRPK1 and hNRNPs proteins. This study provides new insights into Nek4 functions, identifying new interaction partners and further suggests an interesting difference between isoform 1 and isoform 2 of this kinase. Nek4 isoform 1 may have similar roles compared to other Neks and these roles are not all preserved in isoform 2. Besides, in some processes, both isoforms showed opposite effects, indicating a possible fine controlled regulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peripheral insulin resistance (IR) is one of the main side effects caused by glucocorticoid (GC)-based therapies, and the molecular mechanisms of GC-induced IR are not yet fully elucidated. Thus, we aimed to investigate the effects of dexamethasone treatment on the main components of insulin and inflammatory signaling in the adipose tissue of rats. Male Wistar rats received daily injections of dexamethasone (1mg/kg body weight (b.w.), intraperitoneally (i.p.)) for 5 days (DEX), whereas control rats received saline (CTL). The metabolic status was investigated, and the epididymal fat fragments were collected for lipolysis and western blot analyses. The DEX rats became hyperglycemic, hyperinsulinemic, insulin resistant and glucose intolerant, compared with the CTL rats (P<0.05). The basal glycerol release in the fat fragments was 1.5-fold higher in the DEX rats (P<0.05). The phosphorylation of protein kinase B (PKB) at ser(473) decreased by 44%, whereas, the phosphorylation of insulin receptor substrate (IRS)-1 at ser(307) increased by 93% in the adipose tissue of the DEX rats after an oral bolus of glucose (P<0.05). The basal phosphorylation of c-jun-N-terminal kinase (JNK) and inhibitor of nuclear factor kappa-B (IKKβ) proteins was reduced by 46% and 58%, respectively, in the adipose tissue of the DEX rats (P<0.05). This was paralleled with a significant reduction (47%) in the glucocorticoid receptor (GR) protein content in the adipose tissue of the DEX rats (P<0.05). The insulin-resistant status of rats induced by dexamethasone administration have PKB and IRS-1 activity attenuated in epididymal fat without increases in the phosphorylation of the proinflammatory signals JNK and IKKβ.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fosmid metagenomic library was constructed with total community DNA obtained from a municipal wastewater treatment plant (MWWTP), with the aim of identifying new FeFe-hydrogenase genes encoding the enzymes most important for hydrogen metabolism. The dataset generated by pyrosequencing of a fosmid library was mined to identify environmental gene tags (EGTs) assigned to FeFe-hydrogenase. The majority of EGTs representing FeFe-hydrogenase genes were affiliated with the class Clostridia, suggesting that this group is the main hydrogen producer in the MWWTP analyzed. Based on assembled sequences, three FeFe-hydrogenase genes were predicted based on detection of the L2 motif (MPCxxKxxE) in the encoded gene product, confirming true FeFe-hydrogenase sequences. These sequences were used to design specific primers to detect fosmids encoding FeFe-hydrogenase genes predicted from the dataset. Three identified fosmids were completely sequenced. The cloned genomic fragments within these fosmids are closely related to members of the Spirochaetaceae, Bacteroidales and Firmicutes, and their FeFe-hydrogenase sequences are characterized by the structure type M3, which is common to clostridial enzymes. FeFe-hydrogenase sequences found in this study represent hitherto undetected sequences, indicating the high genetic diversity regarding these enzymes in MWWTP. Results suggest that MWWTP have to be considered as reservoirs for new FeFe-hydrogenase genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic ethanol consumption leads to reproductive damages, since it can act directly in the tissues or indirectly, causing a hormonal imbalance. Prostate is a hormone-dependent gland and, consequently, susceptible to ethanol. The potential of testosterone therapy in the ethanol-related disorders was investigated in the prostate microenvironment. UChB rats aged 90 days were divided into 2 experimental groups (n=20): C: drinking water only and EtOH: drinking 10% (v/v) ethanol at >2 g/kg body weight/day+water. At 150 days old, 10 rats from each group received subcutaneous injections of testosterone cypionate (5 mg/kg body weight) diluted in corn oil every other day for 4 weeks, constituting T and EtOH+T, while the remaining animals received corn oil as vehicle. Animals were euthanized at 180 days old, by decapitation. Blood was collected to obtain hormone concentrations and ventral prostate was dissected and processed for light microscope and molecular analyses. Ventral prostate weight, plasma testosterone and DHT and intraprostatic testosterone concentrations were increased after testosterone treatment. Plasma estradiol level was reduced in the EtOH+T. Inflammatory foci, metaplasia and epithelial atrophy were constantly found in the prostate of EtOH and were not observed after hormonal therapy. No differences were found in the expression of AR, ERβ and DACH-1. Additionally, testosterone treatment down-regulated ERα and increased the e-cadherin and α-actinin immunoreactivities. Testosterone was able to reverse damages caused by ethanol consumption in the prostate microenvironment and becomes a possible target to be investigated to ethanol-related disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cocoa is rich in flavonoids, which are potent antioxidants with established benefits for cardiovascular health but unproven effects on neurodegeneration. Sirtuins (SIRTs), which make up a family of deacetylases, are thought to be sensitive to oxidation. In this study, the possible protective effects of cocoa in the diabetic retina were assessed. Rat Müller cells (rMCs) exposed to normal or high glucose (HG) or H2O2 were submitted to cocoa treatment in the presence or absence of SIRT-1 inhibitor and small interfering RNA The experimental animal study was conducted in streptozotocin-induced diabetic rats randomized to receive low-, intermediate-, or high-polyphenol cocoa treatments via daily gavage for 16 weeks (i.e., 0.12, 2.9 or 22.9 mg/kg/day of polyphenols). The rMCs exposed to HG or H2O2 exhibited increased glial fibrillary acidic protein (GFAP) and acetyl-RelA/p65 and decreased SIRT1 activity/expression. These effects were cancelled out by cocoa, which decreased reactive oxygen species production and PARP-1 activity, augmented the intracellular pool of NAD(+), and improved SIRT1 activity. The rat diabetic retinas displayed the early markers of retinopathy accompanied by markedly impaired electroretinogram. The presence of diabetes activated PARP-1 and lowered NAD(+) levels, resulting in SIRT1 impairment. This augmented acetyl RelA/p65 had the effect of up-regulated GFAP. Oral administration of polyphenol cocoa restored the above alterations in a dose-dependent manner. This study reveals that cocoa enriched with polyphenol improves the retinal SIRT-1 pathway, thereby protecting the retina from diabetic milieu insult.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some bacteria common in anaerobic digestion process can ferment a broad variety of organic compounds to organic acids, alcohols, and hydrogen, which can be used as biofuels. Researches are necessary to control the microbial interactions in favor of the alcohol production, as intermediary products of the anaerobic digestion of organic compounds. This paper reports on the effect of buffering capacity on the production of organic acids and alcohols from wastewater by a natural mixed bacterial culture. The hypothesis tested was that the increase of the buffering capacity by supplementation of sodium bicarbonate in the influent results in benefits for alcohol production by anaerobic fermentation of wastewater. When the influent was not supplemented with sodium bicarbonate, the chemical oxygen demand (COD)-ethanol and COD-methanol detected in the effluent corresponded to 22.5 and 12.7 % of the COD-sucrose consumed. Otherwise, when the reactor was fed with influent containing 0.5 g/L of sodium bicarbonate, the COD-ethanol and COD-methanol were effluents that corresponded to 39.2 and 29.6 % of the COD-sucrose consumed. Therefore, the alcohol production by supplementation of the influent with sodium bicarbonate was 33.6 % higher than the fermentation of the influent without sodium bicarbonate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-speed counter-current chromatography (HSCCC) is a major tool for the fast separation of natural products from plants. It was used for the preparative isolation of the flavonoid monoglucosides present in the aerial parts of the Davilla elliptica St. Hill. (Dilleniaceae). This species is used in Brazilian folk medicine for the treatment of gastric disorders. The optimum solvent system used was composed of a mixture of ethyl acetate-n-propanol-water (140:8:80, v/v/v) and led to a successful separation of quercetin-3-O-alpha-L-rhamnopyranoside and myricetin-3-O-alpha-L-rhamnopyranoside in approximately 3.0 hours with purity higher than 95%. Identification was performed by ¹H NMR, 13C NMR and HPLC-UV-DAD analyses.