1000 resultados para Regione Scale


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chebyshev-inequality-based convex relaxations of Chance-Constrained Programs (CCPs) are shown to be useful for learning classifiers on massive datasets. In particular, an algorithm that integrates efficient clustering procedures and CCP approaches for computing classifiers on large datasets is proposed. The key idea is to identify high density regions or clusters from individual class conditional densities and then use a CCP formulation to learn a classifier on the clusters. The CCP formulation ensures that most of the data points in a cluster are correctly classified by employing a Chebyshev-inequality-based convex relaxation. This relaxation is heavily dependent on the second-order statistics. However, this formulation and in general such relaxations that depend on the second-order moments are susceptible to moment estimation errors. One of the contributions of the paper is to propose several formulations that are robust to such errors. In particular a generic way of making such formulations robust to moment estimation errors is illustrated using two novel confidence sets. An important contribution is to show that when either of the confidence sets is employed, for the special case of a spherical normal distribution of clusters, the robust variant of the formulation can be posed as a second-order cone program. Empirical results show that the robust formulations achieve accuracies comparable to that with true moments, even when moment estimates are erroneous. Results also illustrate the benefits of employing the proposed methodology for robust classification of large-scale datasets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Daily rainfall datasets of 10 years (1998-2007) of Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) version 6 and India Meteorological Department (IMD) gridded rain gauge have been compared over the Indian landmass, both in large and small spatial scales. On the larger spatial scale, the pattern correlation between the two datasets on daily scales during individual years of the study period is ranging from 0.4 to 0.7. The correlation improved significantly (similar to 0.9) when the study was confined to specific wet and dry spells each of about 5-8 days. Wavelet analysis of intraseasonal oscillations (ISO) of the southwest monsoon rainfall show the percentage contribution of the major two modes (30-50 days and 10-20 days), to be ranging respectively between similar to 30-40% and 5-10% for the various years. Analysis of inter-annual variability shows the satellite data to be underestimating seasonal rainfall by similar to 110 mm during southwest monsoon and overestimating by similar to 150 mm during northeast monsoon season. At high spatio-temporal scales, viz., 1 degrees x1 degrees grid, TMPA data do not correspond to ground truth. We have proposed here a new analysis procedure to assess the minimum spatial scale at which the two datasets are compatible with each other. This has been done by studying the contribution to total seasonal rainfall from different rainfall rate windows (at 1 mm intervals) on different spatial scales (at daily time scale). The compatibility spatial scale is seen to be beyond 5 degrees x5 degrees average spatial scale over the Indian landmass. This will help to decide the usability of TMPA products, if averaged at appropriate spatial scales, for specific process studies, e.g., cloud scale, meso scale or synoptic scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mycobacterium tuberculosis owes its high pathogenic potential to its ability to evade host immune responses and thrive inside the macrophage. The outcome of infection is largely determined by the cellular response comprising a multitude of molecular events. The complexity and inter-relatedness in the processes makes it essential to adopt systems approaches to study them. In this work, we construct a comprehensive network of infection-related processes in a human macrophage comprising 1888 proteins and 14,016 interactions. We then compute response networks based on available gene expression profiles corresponding to states of health, disease and drug treatment. We use a novel formulation for mining response networks that has led to identifying highest activities in the cell. Highest activity paths provide mechanistic insights into pathogenesis and response to treatment. The approach used here serves as a generic framework for mining dynamic changes in genome-scale protein interaction networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on a wafer scale fabrication method of a three-dimensional plasmonic metamaterial with strong chiroptical response in the visible region of the electromagnetic spectrum. The system was comprised of metallic nanoparticles arranged in a helical fashion, with high degree of flexibility over the choice of the underlying material, as well as their geometrical parameters. This resulted in exquisite control over the chiroptical properties, most importantly the spectral signature of the circular dichroism. In spite of the large variability in the arrangement, as well as the size and shape of the constituent nanoparticles, the average chiro-optical response of the material remained uniform across the wafer, thus confirming the suitability of this system as a large area chiral metamaterial. By simply heating the substrate for a few minutes, the geometrical properties of the nanoparticles could be altered, thus providing an additional handle towards tailoring the spectral response of this novel material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. The relationship between species richness and ecosystem function, as measured by productivity or biomass, is of long-standing theoretical and practical interest in ecology. This is especially true for forests, which represent a majority of global biomass, productivity and biodiversity. 2. Here, we conduct an analysis of relationships between tree species richness, biomass and productivity in 25 forest plots of area 8-50ha from across the world. The data were collected using standardized protocols, obviating the need to correct for methodological differences that plague many studies on this topic. 3. We found that at very small spatial grains (0.04ha) species richness was generally positively related to productivity and biomass within plots, with a doubling of species richness corresponding to an average 48% increase in productivity and 53% increase in biomass. At larger spatial grains (0.25ha, 1ha), results were mixed, with negative relationships becoming more common. The results were qualitatively similar but much weaker when we controlled for stem density: at the 0.04ha spatial grain, a doubling of species richness corresponded to a 5% increase in productivity and 7% increase in biomass. Productivity and biomass were themselves almost always positively related at all spatial grains. 4. Synthesis. This is the first cross-site study of the effect of tree species richness on forest biomass and productivity that systematically varies spatial grain within a controlled methodology. The scale-dependent results are consistent with theoretical models in which sampling effects and niche complementarity dominate at small scales, while environmental gradients drive patterns at large scales. Our study shows that the relationship of tree species richness with biomass and productivity changes qualitatively when moving from scales typical of forest surveys (0.04ha) to slightly larger scales (0.25 and 1ha). This needs to be recognized in forest conservation policy and management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we propose low-complexity algorithms based on Monte Carlo sampling for signal detection and channel estimation on the uplink in large-scale multiuser multiple-input-multiple-output (MIMO) systems with tens to hundreds of antennas at the base station (BS) and a similar number of uplink users. A BS receiver that employs a novel mixed sampling technique (which makes a probabilistic choice between Gibbs sampling and random uniform sampling in each coordinate update) for detection and a Gibbs-sampling-based method for channel estimation is proposed. The algorithm proposed for detection alleviates the stalling problem encountered at high signal-to-noise ratios (SNRs) in conventional Gibbs-sampling-based detection and achieves near-optimal performance in large systems with M-ary quadrature amplitude modulation (M-QAM). A novel ingredient in the detection algorithm that is responsible for achieving near-optimal performance at low complexity is the joint use of a mixed Gibbs sampling (MGS) strategy coupled with a multiple restart (MR) strategy with an efficient restart criterion. Near-optimal detection performance is demonstrated for a large number of BS antennas and users (e. g., 64 and 128 BS antennas and users). The proposed Gibbs-sampling-based channel estimation algorithm refines an initial estimate of the channel obtained during the pilot phase through iterations with the proposed MGS-based detection during the data phase. In time-division duplex systems where channel reciprocity holds, these channel estimates can be used for multiuser MIMO precoding on the downlink. The proposed receiver is shown to achieve good performance and scale well for large dimensions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The simulation of precipitation in a general circulation model relying on relaxed mass flux cumulus parameterization scheme is sensitive to cloud adjustment time scale (CATS). In this study, the frequency of the dominant intra-seasonal mode and interannual variability of Indian summer monsoon rainfall (ISMR) simulated by an atmospheric general circulation model is shown to be sensitive to the CATS. It has been shown that a longer CATS of about 5 h simulates the spatial distribution of the ISMR better. El Nio Southern Oscillation-ISMR relationship is also sensitive to CATS. The equatorial Indian Ocean rainfall and ISMR coupling is sensitive to CATS. Our study suggests that a careful choice of CATS is necessary for adequate simulation of spatial pattern as well as interannual variation of Indian summer monsoon precipitation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Small-scale mechanical testing of materials has gained prominence in the last decade or so due to the continuous miniaturization of components and devices in everyday application. This review describes the various micro-fabrication processes associated with the preparation of miniaturized specimens, geometries of test specimens and the small scale testing techniques used to determine the mechanical behaviour of materials at the length scales of a few hundred micro-meters and below. This is followed by illustrative examples in a selected class of materials. The choice of the case studies is based on the relevance of the materials used in today's world: evaluation of mechanical properties of thermal barrier coatings (TBCs), applied for enhanced high temperature protection of advanced gas turbine engine components, is essential since its failure by fracture leads to the collapse of the engine system. Si-based substrates, though brittle, are indispensible for MEMS/NEMS applications. Biological specimens, whose response to mechanical loads is important to ascertain their role in diseases and to mimic their structure for attaining high fracture toughness and impact resistance. An insight into the mechanisms behind the observed size effects in metallic systems can be exploited to achieve excellent strength at the nano-scale. A future outlook of where all this is heading is also presented.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we propose a low-complexity algorithm based on Markov chain Monte Carlo (MCMC) technique for signal detection on the uplink in large scale multiuser multiple input multiple output (MIMO) systems with tens to hundreds of antennas at the base station (BS) and similar number of uplink users. The algorithm employs a randomized sampling method (which makes a probabilistic choice between Gibbs sampling and random sampling in each iteration) for detection. The proposed algorithm alleviates the stalling problem encountered at high SNRs in conventional MCMC algorithm and achieves near-optimal performance in large systems with M-QAM. A novel ingredient in the algorithm that is responsible for achieving near-optimal performance at low complexities is the joint use of a randomized MCMC (R-MCMC) strategy coupled with a multiple restart strategy with an efficient restart criterion. Near-optimal detection performance is demonstrated for large number of BS antennas and users (e.g., 64, 128, 256 BS antennas/users).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The set of indispensable genes that are required by an organism to grow and sustain life are termed as essential genes. There is a strong interest in identification of the set of essential genes, particularly in pathogens, not only for a better understanding of the pathogen biology, but also for identifying drug targets and the minimal gene set for the organism. Essentiality is inherently a systems property and requires consideration of the system as a whole for their identification. The available experimental approaches capture some aspects but each method comes with its own limitations. Moreover, they do not explain the basis for essentiality in most cases. A powerful prediction method to recognize this gene pool including rationalization of the known essential genes in a given organism would be very useful. Here we describe a multi-level multi-scale approach to identify the essential gene pool in a deadly pathogen, Mycobacterium tuberculosis. Results: The multi-level workflow analyses the bacterial cell by studying (a) genome-wide gene expression profiles to identify the set of genes which show consistent and significant levels of expression in multiple samples of the same condition, (b) indispensability for growth by using gene expression integrated flux balance analysis of a genome-scale metabolic model, (c) importance for maintaining the integrity and flow in a protein-protein interaction network and (d) evolutionary conservation in a set of genomes of the same ecological niche. In the gene pool identified, the functional basis for essentiality has been addressed by studying residue level conservation and the sub-structure at the ligand binding pockets, from which essential amino acid residues in that pocket have also been identified. 283 genes were identified as essential genes with high-confidence. An agreement of about 73.5% is observed with that obtained from the experimental transposon mutagenesis technique. A large proportion of the identified genes belong to the class of intermediary metabolism and respiration. Conclusions: The multi-scale, multi-level approach described can be generally applied to other pathogens as well. The essential gene pool identified form a basis for designing experiments to probe their finer functional roles and also serve as a ready shortlist for identifying drug targets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Elastic Net Regularizers have shown much promise in designing sparse classifiers for linear classification. In this work, we propose an alternating optimization approach to solve the dual problems of elastic net regularized linear classification Support Vector Machines (SVMs) and logistic regression (LR). One of the sub-problems turns out to be a simple projection. The other sub-problem can be solved using dual coordinate descent methods developed for non-sparse L2-regularized linear SVMs and LR, without altering their iteration complexity and convergence properties. Experiments on very large datasets indicate that the proposed dual coordinate descent - projection (DCD-P) methods are fast and achieve comparable generalization performance after the first pass through the data, with extremely sparse models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper attempts to gain an understanding of the effect of lamellar length scale on the mechanical properties of two-phase metal-intermetallic eutectic structure. We first develop a molecular dynamics model for the in-situ grown eutectic interface followed by a model of deformation of Al-Al2Cu lamellar eutectic. Leveraging the insights obtained from the simulation on the behaviour of dislocations at different length scales of the eutectic, we present and explain the experimental results on Al-Al2Cu eutectic with various different lamellar spacing. The physics behind the mechanism is further quantified with help of atomic level energy model for different length scale as well as different strain. An atomic level energy partitioning of the lamellae and the interface regions reveals that the energy of the lamellae core are accumulated more due to dislocations irrespective of the length-scale. Whereas the energy of the interface is accumulated more due to dislocations when the length-scale is smaller, but the trend is reversed when the length-scale is large beyond a critical size of about 80 nm. (C) 2014 Author(s).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Global change in climate and consequent large impacts on regional hydrologic systems have, in recent years, motivated significant research efforts in water resources modeling under climate change. In an integrated future hydrologic scenario, it is likely that water availability and demands will change significantly due to modifications in hydro-climatic variables such as rainfall, reservoir inflows, temperature, net radiation, wind speed and humidity. An integrated regional water resources management model should capture the likely impacts of climate change on water demands and water availability along with uncertainties associated with climate change impacts and with management goals and objectives under non-stationary conditions. Uncertainties in an integrated regional water resources management model, accumulating from various stages of decision making include climate model and scenario uncertainty in the hydro-climatic impact assessment, uncertainty due to conflicting interests of the water users and uncertainty due to inherent variability of the reservoir inflows. This paper presents an integrated regional water resources management modeling approach considering uncertainties at various stages of decision making by an integration of a hydro-climatic variable projection model, a water demand quantification model, a water quantity management model and a water quality control model. Modeling tools of canonical correlation analysis, stochastic dynamic programming and fuzzy optimization are used in an integrated framework, in the approach presented here. The proposed modeling approach is demonstrated with the case study of the Bhadra Reservoir system in Karnataka, India.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scaling behaviour has been observed at mesoscopic level irrespective of crystal structure, type of boundary and operative micro-mechanisms like slip and twinning. The presence of scaling at the meso-scale accompanied with that at the nano-scale clearly demonstrates the intrinsic spanning for different deformation processes and a true universal nature of scaling. The origin of a 1/2 power law in deformation of crystalline materials in terms of misorientation proportional to square root of strain is attributed to importance of interfaces in deformation processes. It is proposed that materials existing in three dimensional Euclidean spaces accommodate plastic deformation by one dimensional dislocations and their interaction with two dimensional interfaces at different length scales. This gives rise to a 1/2 power law scaling in materials. This intrinsic relationship can be incorporated in crystal plasticity models that aim to span different length and time scales to predict the deformation response of crystalline materials accurately.