960 resultados para Regeneration -- immunology
Resumo:
Aims: Guided tissue regeneration (GTR) and enamel matrix derivatives (EMD) are two popular regenerative treatments for periodontal infrabony lesions. Both have been used in conjunction with other regenerative materials. We conducted a Bayesian network meta-analysis of randomized controlled trials on treatment effects of GTR, EMD and their combination therapies. Material and Methods: A systematic literature search was conducted using the Medline, EMBASE, LILACS and CENTRAL databases up to and including June 2011. Treatment outcomes were changes in probing pocket depth (PPD), clinical attachment level (CAL) and infrabony defect depth. Different types of bone grafts were treated as one group and so were barrier membranes. Results: A total of 53 studies were included in this review, and we found small differences between regenerative therapies which were non-significant statistically and clinically. GTR and GTR-related combination therapies achieved greater PPD reduction than EMD and EMD-related combination therapies. Combination therapies achieved slightly greater CAL gain than the use of EMD or GTR alone. GTR with BG achieved greatest defect fill. Conclusion: Combination therapies performed better than single therapies, but the additional benefits were small. Bayesian network meta-analysis is a promising technique to compare multiple treatments. Further analysis of methodological characteristics will be required prior to clinical recommendations.
Resumo:
The time required to regrowth a forest in degraded areas depends on how the forest is removed and on the type of land use following removal. Natural regeneration was studied in abandoned old fields after intensive agricultural land use in areas originally covered by Brazilian Atlantic Forests of the Anchieta Island, Brazil in order to understand how plant communities reassemble following human disturbances as well as to determine suitable strategies of forest restoration. The fields were classified into three vegetation types according to the dominant plant species in: 1) Miconia albicans (Sw.) Triana (Melastomataceae) fields, 2) Dicranopteris flexuosa (Schrader) Underw. (Gleicheniaceae) thickets, and 3) Gleichenella pectinata (Willd.) Ching. (Gleicheniaceae) thickets. Both composition and structure of natural regeneration were compared among the three dominant vegetation types by establishing randomly three plots of 1 x 3 m in five sites of the island. A gradient in composition and abundance of species in natural regeneration could be observed along vegetation types from Dicranopteris fern thickets to Miconia fields. The gradient did not accurately follow the pattern of spatial distribution of the three dominant vegetation types in the island regarding their proximity of the remnant forests. A complex association of biotic and abiotic factors seems to be affecting the seedling recruitment and establishment in the study plots. The lowest plant regeneration found in Dicranopteris and Gleichenella thickets suggests that the ferns inhibit the recruitment of woody and herbaceous species. Otherwise, we could not distinguish different patterns of tree regeneration among the three vegetation types. Our results showed that forest recovery following severe anthropogenic disturbances is not direct, predictable or even achievable on its own. Appropriated actions and methods such as fern removal, planting ground covers, and enrichment planting with tree species were suggested in order to restore the natural forest regeneration process in the abandoned old fields.
Resumo:
The time required to regrowth a forest in degraded areas depends on how the forest is removed and on the type of land use following removal. Natural regeneration was studied in abandoned old fields after intensive agricultural land use in areas originally covered by Brazilian Atlantic Forests of the Anchieta Island, Brazil in order to understand how plant communities reassemble following human disturbances as well as to determine suitable strategies of forest restoration. The fields were classified into three vegetation types according to the dominant plant species in: 1) Miconia albicans (Sw.) Triana (Melastomataceae) fields, 2) Dicranopteris flexuosa (Schrader) Underw. (Gleicheniaceae) thickets, and 3) Gleichenella pectinata (Willd.) Ching. (Gleicheniaceae) thickets. Both composition and structure of natural regeneration were compared among the three dominant vegetation types by establishing randomly three plots of 1 x 3 m in five sites of the island. A gradient in composition and abundance of species in natural regeneration could be observed along vegetation types from Dicranopteris fern thickets to Miconia fields. The gradient did not accurately follow the pattern of spatial distribution of the three dominant vegetation types in the island regarding their proximity of the remnant forests. A complex association of biotic and abiotic factors seems to be affecting the seedling recruitment and establishment in the study plots. The lowest plant regeneration found in Dicranopteris and Gleichenella thickets suggests that the ferns inhibit the recruitment of woody and herbaceous species. Otherwise, we could not distinguish different patterns of tree regeneration among the three vegetation types. Our results showed that forest recovery following severe anthropogenic disturbances is not direct, predictable or even achievable on its own. Appropriated actions and methods such as fern removal, planting ground covers, and enrichment planting with tree species were suggested in order to restore the natural forest regeneration process in the abandoned old fields.
Resumo:
Support structures for dermal regeneration are composed of biodegradable and bioresorbable polymers, animal skin or tendons, or are bacteria products. The use of such materials is controversial due to their low efficiency. An important area within tissue engineering is the application of multipotent mesenchymal stromal cells (MSCs) to reparative surgery. The combined use of biodegradable membranes with stem cell therapy may lead to promising results for patients undergoing unsuccessful conventional treatments. Thus, the aim of this study was to test the efficacy of using membranes composed of anionic collagen with or without the addition of hyaluronic acid (HA) as a substrate for adhesion and in vitro differentiation of bone marrow-derived canine MSCs. The benefit of basic fibroblast growth factor (bFGF) on the differentiation of cells in culture was also tested. MSCs were collected from dog bone marrow, isolated and grown on collagen scaffolds with or without HA. Cell viability, proliferation rate, and cellular toxicity were analyzed after 7 days. The cultured cells showed uniform growth and morphological characteristics of undifferentiated MSCs, which demonstrated that MSCs successfully adapted to the culture conditions established by collagen scaffolds with or without HA. This demonstrates that such scaffolds are promising for applications to tissue regeneration. bFGF significantly increased the proliferative rate of MSCs by 63% when compared to groups without the addition of the growth factor. However, the addition of bFGF becomes limiting, since it has an inhibitory effect at high concentrations in culture medium.
Resumo:
Skeletal muscle possesses the remarkable capacity to complete a rapid and extensive regeneration, even following severe damage. The regenerative ability of skeletal muscle relies on Satellite Cells (SCs), a population of muscle specific adult stem cells. However, during aging or under several pathological conditions, the ability of skeletal muscle to fully regenerated is compromised. Here, a morphological and molecular study on SCs from patients affected by ALS is described. Moreover, the role of the cell cycle regulator P16Ink4a during skeletal muscle regeneration and aging has been investigated.
Resumo:
Samenausbreitung und Regeneration von Bäumen sind wichtig für den langfristigen Bestand von Baum- und Frugivorengemeinschaften in tropischen Regenwäldern. Zunehmende Rohdung und Degradation gefährden den Ablauf dieser mutualistischen Prozesse in diesem Ökosystem. Um den Einfluss von kleinräumiger menschlicher Störung auf die Frugivorengemeinschaft und die zentralen Ökosystemprozesse Samenausbreitung und Regeneration zu erforschen, habe ich 1) die Frugivorengemeinschaft und die Samenausbreitungsrate von Celtis durandii (Ulmaceae) und 2) den Zusammenhang zwischen Baumarten mit fleischigen Früchten, Frugivoren und der Etablierung von Keimlingen dieser Baumarten in unterschiedlich stark gestörten Flächen dreier ostafrikanischer tropischer Regenwälder untersucht. Insgesamt konnte ich 40 frugivore Vogel- und Primatenarten in den drei untersuchten Waldgebieten nachweisen. Auf gering gestörten Flächen wurden mehr Frugivore als auf stark gestörten Flächen aufgenommen. Auch die Beobachtungen an C. durandii ergaben mehr frugivore Besucher in Bäumen auf gering gestörten als auf stark gestörten Flächen. Dies führte zu einer marginal signifikant höheren Samenausbreitungsrate auf den gering gestörten Flächen. Diese Ergebnisse waren auf regionaler Ebene in allen drei untersuchten Wäldern konsistent. Dies zeigt, dass kleinräumige Störung einen umfassenderen negativen Einfluss auf Frugivore und ihre Funktion als Samenausbreiter hat als zuvor angenommen. Bei der Vegetationserfassung nahm ich 131 verschiedene Baumarten mit fleischigen Früchten in den drei Regenwäldern auf. Kleinräumige menschliche Störung erhöhte den Artenreichtum dieser Baumarten marginal signifikant, hatte jedoch keinen direkten Einfluss auf die Frugivorendichte und den Artenreichtum von Keimlingen dieser Baumarten. Der Artenreichtum von Baumarten mit fleischigen Früchten zeigte einen marginal signifikant positiven Einfluss auf die Frugivorendichte, allerdings nicht auf die Keimlinge. Allerdings führte die Dichte der Frugivoren zu signifikant erhöhtem Artenreichtum der Keimlinge. Folglich scheint kleinräumige Störung die Keimlingsetablierung indirekt durch erhöhten Baumartenreichtum und erhöhte Frugivorendichte zu beeinflussen. Die Frugivorendichte hatte einen größeren Einfluss auf die Waldregeneration als kleinräumige Störung und Baumartenreichtum. Demnach scheint kleinräumige menschliche Störung sowohl positive als auch negative Effekte auf Samenausbreitung und Regeneration zu haben. Somit sind weitere Studien notwendig, die den Einfluss von kleinräumiger menschlicher Störung auf Mutualismen tropischer Regenwälder aufklären.
Resumo:
The present research thesis was focused on the development of new biomaterials and devices for application in regenerative medicine, particularly in the repair/regeneration of bone and osteochondral regions affected by degenerative diseases such as Osteoarthritis and Osteoporosis or serious traumas. More specifically, the work was focused on the synthesis and physico-chemical-morphological characterization of: i) a new superparamagnetic apatite phase; ii) new biomimetic superparamagnetic bone and osteochondral scaffolds; iii) new bioactive bone cements for regenerative vertebroplasty. The new bio-devices were designed to exhibit high biomimicry with hard human tissues and with functionality promoting faster tissue repair and improved texturing. In particular, recent trends in tissue regeneration indicate magnetism as a new tool to stimulate cells towards tissue formation and organization; in this perspective a new superparamagnetic apatite was synthesized by doping apatite lattice with di-and trivalent iron ions during synthesis. This finding was the pin to synthesize newly conceived superparamagnetic bone and osteochondral scaffolds by reproducing in laboratory the biological processes yielding the formation of new bone, i.e. the self-assembly/organization of collagen fibrils and heterogeneous nucleation of nanosized, ionically substituted apatite mimicking the mineral part of bone. The new scaffolds can be magnetically switched on/off and function as workstations guiding fast tissue regeneration by minimally invasive and more efficient approaches. Moreover, in the view of specific treatments for patients affected by osteoporosis or traumas involving vertebrae weakening or fracture, the present work was also dedicated to the development of new self-setting injectable pastes based on strontium-substituted calcium phosphates, able to harden in vivo and transform into strontium-substituted hydroxyapatite. The addition of strontium may provide an anti-osteoporotic effect, aiding to restore the physiologic bone turnover. The ceramic-based paste was also added with bio-polymers, able to be progressively resorbed thus creating additional porosity in the cement body that favour cell colonization and osseointegration.
Resumo:
The prospect of the continuous multiplication of life styles, the obsolescence of the traditional typological diagrams, the usability of spaces on different territorial scales, imposes on contemporary architecture the search for new models of living. Limited densities in urban development have produced the erosion of territory, the increase of the harmful emissions and energy consumption. High density housing cannot refuse the social emergency to ensure high quality and low cost dwellings, to a new people target: students, temporary workers, key workers, foreign, young couples without children, large families and, in general, people who carry out public services. Social housing strategies have become particularly relevant in regenerating high density urban outskirts. The choice of this research topic derives from the desire to deal with the recent accommodation emergency, according to different perspectives, with a view to give a contribution to the current literature, by proposing some tools for a correct design of the social housing, by ensuring good quality, cost-effective, and eco-sustainable solutions, from the concept phase, through management and maintenance, until the end of the building life cycle. The purpose of the thesis is defining a framework of guidelines that become effective instruments to be used in designing the social housing. They should also integrate the existing regulations and are mainly thought for those who work in this sector. They would aim at supporting students who have to cope with this particular residential theme, and also the users themselves. The scientific evidence of either the recent specialized literature or the solutions adopted in some case studies within the selected metropolitan areas of Milan, London and São Paulo, it is possible to identify the principles of this new design approach, in which the connection between typology, morphology and technology pursues the goal of a high living standard.
Resumo:
The aim of this thesis was to investigate the regenerative potential of alternative sources of stem cells, derived from human dental pulp (hDPSCs) and amniotic fluid (hAFSCs) and, specifically, to evaluate their capability to be committed towards osteogenic and myogenic lineages, for the eventual applicability of these stem cells to translational strategies in regenerative medicine of bone and skeletal muscle tissues. The in vitro bone production by stem cells may represent a radical breakthrough in the treatment of pathologies and traumas characterized by critical bone mass defects, with no medical or surgical solution. Human DPSCs and AFSCs were seeded and pre-differentiated on different scaffolds to test their capability to subsequently reach the osteogenic differentiation in vivo, in order to recover critical size bone defects. Fibroin scaffold resulted to be the best scaffold promoting mature bone formation and defect correction when combined to both hDPSCs and hAFSCs. This study also described a culture condition that might allow human DPSCs to be used for human cell therapy in compliance with good manufacturing practices (GMPs): the use of human serum (HS) promoted the expansion and the osteogenic differentiation of hDPSCs in vitro and, furthermore, allowed pre-differentiated hDPSCs to regenerate critical size bone defects in vivo. This thesis also showed that hDPSCs and hAFSCs can be differentiated towards the myogenic lineage in vitro, either when co-cultured with murine myoblasts and when differentiated alone after DNA demethylation treatment. Interestingly, when injected into dystrophic muscles of SCID/mdx mice - animal model of Duchenne Muscular Dystrophy (DMD) - hDPSCs and hAFSCs pre-differentiated after demethylating treatment were able to regenerate the skeletal muscle tissue and, particularly, to restore dystrophin expression. These observations suggest that human DPSCs and AFSCs might be eventually applied to translational strategies, in order to enhance the repair of injured skeletal muscles in DMD patients.
Resumo:
Regenerative medicine and tissue engineering attempt to repair or improve the biological functions of tissues that have been damaged or have ceased to perform their role through three main components: a biocompatible scaffold, cellular component and bioactive molecules. Nanotechnology provide a toolbox of innovative scaffold fabrication procedures in regenerative medicine. In fact, nanotechnology, using manufacturing techniques such as conventional and unconventional lithography, allows fabricating supports with different geometries and sizes as well as displaying physical chemical properties tunable over different length scales. Soft lithography techniques allow to functionalize the support by specific molecules that promote adhesion and control the growth of cells. Understanding cell response to scaffold, and viceversa, is a key issue; here we show our investigation of the essential features required for improving the cell-surface interaction over different scale lengths. The main goal of this thesis has been to devise a nanotechnology-based strategy for the fabrication of scaffolds for tissue regeneration. We made four types of scaffolds, which are able to accurately control cell adhesion and proliferation. For each scaffold, we chose properly designed materials, fabrication and characterization techniques.
Resumo:
The aim of the present study is to evaluate the clinical and histologic healing of deep intrabony defects treated with guided tissue regeneration (GTR) with a collagen membrane from bovine pericardium and implantation of granular bovine bone biomaterial.
Resumo:
The purpose of this study is to compare the healing of deep, non-contained intrabony defects (i.e., with a ?80% 1-wall component and a residual 2- to 3-wall component in the most apical part) treated with either an enamel matrix derivative (EMD) or guided tissue regeneration (GTR) after 12 months.
Resumo:
Ablative procedures that are used for the improvement of a degenerative process that leads to a loss of skin elasticity and integrity, injure or destroy the epidermis and its basement membrane and lead to fibrosis of the papillary dermis. It was recently shown in clinical and laboratory trials that percutaneous collagen induction (PCI) by multiple needle application is a method for safely treating wrinkles and scars and smoothening the skin without the risk of dyspigmentation. In our study, we describe the effect of PCI on epidermal thickness and the induction of genes relevant for regenerative processes in the skin in a small animal model.
Resumo:
With the understanding of angiogenesis and arteriogenesis, new theories about the orchestration of these processes have emerged. The aim of this study was to develop an in vivo model that enables visualization of vascular regenerating mechanisms by intravital microscopy techniques in collateral arteriolar flap vascularity.