1000 resultados para Redes Neurais Artificiais em Cascata
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Classificação de tábuas de madeira usando processamento de imagens digitais e aprendizado de máquina
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
This project aims to explore the many methods used for the development of recommendation systems to user ’ s items and apply the content - based recommendation method on a prototype system whose purpose is to recommend books to users. This paper exposes the most popular methods for creating systems capable of providing items (products) according to user preferences, such as collaborat ive filtering and content - based. It also point different techniques that can be applied to calculate the similarity between two entities, for items or users, as the Pearson ’s method, calculating the cosine of vectors and more recently, a proposal to use a Bayesian system under a Dirichlet distribution. In addition, this work has the purpose to go through various points on the design of an online application, or a website, dealing not only oriented algorithms issues, but also the definition of development to ols and techniques to improve the user’s experience. The tools used for the development of the page are listed, and a topic about web design is also discussed in order to emphasize the importance of the layout of the application. At the end, some examples of recommender systems are presented for curiosity , learning and research purposes
Resumo:
This work has as its theme the role of emotions and affectivity in learning, particularly in science learning, being developed from a literature review. We start from the idea that learning occurs through changes in the neural networks of each individual and that these changes are caused by a combination of genetic and biological factors also influenced by emotions and affectivity. We seek information on the functioning of the human brain, highlighting the neuroanatomy and neurocognition, to understand how the brain processes information, including the feelings and emotions experienced by the individual. Once we try to understand which roles are assigned to the feelings and emotions in different learning theories, emphasizing the cognitive and humanistic theories. Finally, we found some more recent contributions to the understanding of the learning process, to the field of neuroscience. We were led to conclude that there is great scope for research in applied neuroscience to education, since the work, especially in the national literature are still scarce
Resumo:
In this project the Pattern Recognition Problem is approached with the Support Vector Machines (SVM) technique, a binary method of classification that provides the best solution separating the data in the better way with a hiperplan and an extension of the input space dimension, as a Machine Learning solution. The system aims to classify two classes of pixels chosen by the user in the interface in the interest selection phase and in the background selection phase, generating all the data to be used in the LibSVM library, a library that implements the SVM, illustrating the library operation in a casual way. The data provided by the interface is organized in three types, RGB (Red, Green and Blue color system), texture (calculated) or RGB + texture. At last the project showed successful results, where the classification of the image pixels was showed as been from one of the two classes, from the interest selection area or from the background selection area. The simplest user view of results classification is the RGB type of data arrange, because it’s the most concrete way of data acquisition
Resumo:
Pós-graduação em Geologia Regional - IGCE
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Geologia Regional - IGCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Semi-qualitative probabilistic networks (SQPNs) merge two important graphical model formalisms: Bayesian networks and qualitative probabilistic networks. They provade a very Complexity of inferences in polytree-shaped semi-qualitative probabilistic networks and qualitative probabilistic networks. They provide a very general modeling framework by allowing the combination of numeric and qualitative assessments over a discrete domain, and can be compactly encoded by exploiting the same factorization of joint probability distributions that are behind the bayesian networks. This paper explores the computational complexity of semi-qualitative probabilistic networks, and takes the polytree-shaped networks as its main target. We show that the inference problem is coNP-Complete for binary polytrees with multiple observed nodes. We also show that interferences can be performed in time linear in the number of nodes if there is a single observed node. Because our proof is construtive, we obtain an efficient linear time algorithm for SQPNs under such assumptions. To the best of our knowledge, this is the first exact polynominal-time algorithm for SQPn. Together these results provide a clear picture of the inferential complexity in polytree-shaped SQPNs.
Resumo:
Existe um problema de representação em processamento de linguagem natural, pois uma vez que o modelo tradicional de bag-of-words representa os documentos e as palavras em uma unica matriz, esta tende a ser completamente esparsa. Para lidar com este problema, surgiram alguns métodos que são capazes de representar as palavras utilizando uma representação distribuída, em um espaço de dimensão menor e mais compacto, inclusive tendo a propriedade de relacionar palavras de forma semântica. Este trabalho tem como objetivo utilizar um conjunto de documentos obtido através do projeto Media Cloud Brasil para aplicar o modelo skip-gram em busca de explorar relações e encontrar padrões que facilitem na compreensão do conteúdo.