891 resultados para Real time systems
Resumo:
Biomedical engineering solutions like surgical simulators need High Performance Computing (HPC) to achieve real-time performance. Graphics Processing Units (GPUs) offer HPC capabilities at low cost and low power consumption. In this work, it is demonstrated that a liver which is discretized by about 2500 finite element nodes, can be graphically simulated in realtime, by making use of a GPU. Present work takes into consideration the time needed for the data transfer from CPU to GPU and back from GPU to CPU. Although behaviour of liver is very complicated, present computer simulation assumes linear elastostatics. One needs to use the commercial software ANSYS to obtain the global stiffness matrix of the liver. Results show that GPUs are useful for the real-time graphical simulation of liver, which in turn is needed in simulators that are used for training surgeons in laparoscopic surgery. Although the computer simulation should involve rendering also, neither rendering, nor the time needed for rendering and displaying the liver on a screen, is considered in the present work. The present work is just a demonstration of a concept; the concept is not really implemented and validated. Future work is to develop software which can accomplish real-time and very realistic graphical simulation of liver, with rendered image of liver on the screen changing in real-time according to the position of the surgical tool tip approximated as the mouse cursor in 3D.
Resumo:
Real-time simulation of deformable solids is essential for some applications such as biological organ simulations for surgical simulators. In this work, deformable solids are approximated to be linear elastic, and an easy and straight forward numerical technique, the Finite Point Method (FPM), is used to model three dimensional linear elastostatics. Graphics Processing Unit (GPU) is used to accelerate computations. Results show that the Finite Point Method, together with GPU, can compute three dimensional linear elastostatic responses of solids at rates suitable for real-time graphics, for solids represented by reasonable number of points.
Resumo:
Real-time kinetics of ligand-ligate interaction has predominantly been studied by either fluorescence or surface plasmon resonance based methods. Almost all such studies are based on association between the ligand and the ligate. This paper reports our analysis of dissociation data of monoclonal antibody-antigen (hCG) system using radio-iodinated hCG as a probe and nitrocellulose as a solid support to immobilize mAb. The data was analyzed quantitatively for a one-step and a two-step model. The data fits well into the two-step model. We also found that a fraction of what is bound is non-dissociable (tight-binding portion (TBP)). The TBP was neither an artifact of immobilization nor does it interfere with analysis. It was present when the reaction was carried out in homogeneous solution in liquid phase. The rate constants obtained from the two methods were comparable. The work reported here shows that real-time kinetics of other ligand-ligate interaction can be studied using nitrocellulose as a solid support. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Over past few years, the studies of cultured neuronal networks have opened up avenues for understanding the ion channels, receptor molecules, and synaptic plasticity that may form the basis of learning and memory. The hippocampal neurons from rats are dissociated and cultured on a surface containing a grid of 64 electrodes. The signals from these 64 electrodes are acquired using a fast data acquisition system MED64 (Alpha MED Sciences, Japan) at a sampling rate of 20 K samples with a precision of 16-bits per sample. A few minutes of acquired data runs in to a few hundreds of Mega Bytes. The data processing for the neural analysis is highly compute-intensive because the volume of data is huge. The major processing requirements are noise removal, pattern recovery, pattern matching, clustering and so on. In order to interface a neuronal colony to a physical world, these computations need to be performed in real-time. A single processor such as a desk top computer may not be adequate to meet this computational requirements. Parallel computing is a method used to satisfy the real-time computational requirements of a neuronal system that interacts with an external world while increasing the flexibility and scalability of the application. In this work, we developed a parallel neuronal system using a multi-node Digital Signal processing system. With 8 processors, the system is able to compute and map incoming signals segmented over a period of 200 ms in to an action in a trained cluster system in real time.
Resumo:
Real-time simulation of deformable solids is essential for some applications such as biological organ simulations for surgical simulators. In this work, deformable solids are approximated to be linear elastic, and an easy and straight forward numerical technique, the Finite Point Method (FPM), is used to model three dimensional linear elastostatics. Graphics Processing Unit (GPU) is used to accelerate computations. Results show that the Finite Point Method, together with GPU, can compute three dimensional linear elastostatic responses of solids at rates suitable for real-time graphics, for solids represented by reasonable number of points.
Resumo:
In this paper we discuss the recent progresses in spectral finite element modeling of complex structures and its application in real-time structural health monitoring system based on sensor-actuator network and near real-time computation of Damage Force Indicator (DFI) vector. A waveguide network formalism is developed by mapping the original variational problem into the variational problem involving product spaces of 1D waveguides. Numerical convergence is studied using a h()-refinement scheme, where is the wavelength of interest. Computational issues towards successful implementation of this method with SHM system are discussed.
Resumo:
In this paper, we give a brief review of pattern classification algorithms based on discriminant analysis. We then apply these algorithms to classify movement direction based on multivariate local field potentials recorded from a microelectrode array in the primary motor cortex of a monkey performing a reaching task. We obtain prediction accuracies between 55% and 90% using different methods which are significantly above the chance level of 12.5%.
Resumo:
A network of ship-mounted real-time Automatic Weather Stations integrated with Indian geosynchronous satellites Indian National Satellites (INSATs)] 3A and 3C, named Indian National Centre for Ocean Information Services Real-Time Automatic Weather Stations (I-RAWS), is established. The purpose of I-RAWS is to measure the surface meteorological-ocean parameters and transmit the data in real time in order to validate and refine the forcing parameters (obtained from different meteorological agencies) of the Indian Ocean Forecasting System (INDOFOS). Preliminary validation and intercomparison of analyzed products obtained from the National Centre for Medium Range Weather Forecasting and the European Centre for Medium-Range Weather Forecasts using the data collected from I-RAWS were carried out. This I-RAWS was mounted on board oceanographic research vessel Sagar Nidhi during a cruise across three oceanic regimes, namely, the tropical Indian Ocean, the extratropical Indian Ocean, and the Southern Ocean. The results obtained from such a validation and intercomparison, and its implications with special reference to the usage of atmospheric model data for forcing ocean model, are discussed in detail. It is noticed that the performance of analysis products from both atmospheric models is similar and good; however, European Centre for Medium-Range Weather Forecasts air temperature over the extratropical Indian Ocean and wind speed in the Southern Ocean are marginally better.
Resumo:
Real-time object tracking is a critical task in many computer vision applications. Achieving rapid and robust tracking while handling changes in object pose and size, varying illumination and partial occlusion, is a challenging task given the limited amount of computational resources. In this paper we propose a real-time object tracker in l(1) framework addressing these issues. In the proposed approach, dictionaries containing templates of overlapping object fragments are created. The candidate fragments are sparsely represented in the dictionary fragment space by solving the l(1) regularized least squares problem. The non zero coefficients indicate the relative motion between the target and candidate fragments along with a fidelity measure. The final object motion is obtained by fusing the reliable motion information. The dictionary is updated based on the object likelihood map. The proposed tracking algorithm is tested on various challenging videos and found to outperform earlier approach.
Resumo:
Detection of petroleum leakages in pipelines and storage tanks is a very important as it may lead to significant pollution of the environment, accidental hazards, and also it is a very important fuel resource. Petroleum leakage detection sensor based on fiber optics was fabricated by etching the fiber Bragg grating (FBG) to a region where the total internal reflection is affected. The experiment shows that the reflected Bragg's wavelength and intensity goes to zero when etched FBG is in air and recovers Bragg's wavelength and intensity when it is comes in contact with petroleum or any external fluid. This acts as high sensitive, fast response fluid optical switch in liquid level sensing, petroleum leakage detection etc. In this paper we present our results on using this technique in petroleum leakage detection.
Resumo:
This paper presents a comparative evaluation of the average and switching models of a dc-dc boost converter from the point of view of real-time simulation. Both the models are used to simulate the converter in real-time on a Field Programmable Gate Array (FPGA) platform. The converter is considered to function over a wide range of operating conditions, and could do transition between continuous conduction mode (CCM) and discontinuous conduction mode (DCM). While the average model is known to be computationally efficient from the perspective of off-line simulation, the same is shown here to consume more logical resources than the switching model for real-time simulation of the dc-dc converter. Further, evaluation of the boundary condition between CCM and DCM is found to be the main reason for the increased consumption of resources by the average model.
Resumo:
This paper describes a spatio-temporal registration approach for speech articulation data obtained from electromagnetic articulography (EMA) and real-time Magnetic Resonance Imaging (rtMRI). This is motivated by the potential for combining the complementary advantages of both types of data. The registration method is validated on EMA and rtMRI datasets obtained at different times, but using the same stimuli. The aligned corpus offers the advantages of high temporal resolution (from EMA) and a complete mid-sagittal view (from rtMRI). The co-registration also yields optimum placement of EMA sensors as articulatory landmarks on the magnetic resonance images, thus providing richer spatio-temporal information about articulatory dynamics. (C) 2014 Acoustical Society of America
Resumo:
PurposeTo extend the previously developed temporally constrained reconstruction (TCR) algorithm to allow for real-time availability of three-dimensional (3D) temperature maps capable of monitoring MR-guided high intensity focused ultrasound applications. MethodsA real-time TCR (RT-TCR) algorithm is developed that only uses current and previously acquired undersampled k-space data from a 3D segmented EPI pulse sequence, with the image reconstruction done in a graphics processing unit implementation to overcome computation burden. Simulated and experimental data sets of HIFU heating are used to evaluate the performance of the RT-TCR algorithm. ResultsThe simulation studies demonstrate that the RT-TCR algorithm has subsecond reconstruction time and can accurately measure HIFU-induced temperature rises of 20 degrees C in 15 s for 3D volumes of 16 slices (RMSE = 0.1 degrees C), 24 slices (RMSE = 0.2 degrees C), and 32 slices (RMSE = 0.3 degrees C). Experimental results in ex vivo porcine muscle demonstrate that the RT-TCR approach can reconstruct temperature maps with 192 x 162 x 66 mm 3D volume coverage, 1.5 x 1.5 x 3.0 mm resolution, and 1.2-s scan time with an accuracy of 0.5 degrees C. ConclusionThe RT-TCR algorithm offers an approach to obtaining large coverage 3D temperature maps in real-time for monitoring MR-guided high intensity focused ultrasound treatments. Magn Reson Med 71:1394-1404, 2014. (c) 2013 Wiley Periodicals, Inc.
Resumo:
USC-TIMIT is an extensive database of multimodal speech production data, developed to complement existing resources available to the speech research community and with the intention of being continuously refined and augmented. The database currently includes real-time magnetic resonance imaging data from five male and five female speakers of American English. Electromagnetic articulography data have also been presently collected from four of these speakers. The two modalities were recorded in two independent sessions while the subjects produced the same 460 sentence corpus used previously in the MOCHA-TIMIT database. In both cases the audio signal was recorded and synchronized with the articulatory data. The database and companion software are freely available to the research community. (C) 2014 Acoustical Society of America.