975 resultados para Rb-
Resumo:
数值模式是潮波研究的一种有利手段,但在研究中会面临各种具体问题,包括开边界条件的确定、底摩擦系数和耗散系数的选取等。数据同化是解决这些问题的一种途径,即利用有限数量的潮汐观测资料对潮波进行最优估计,其根本目的是迫使模型预报值逼近观测值,使模式不要偏离实际情况太远。本文采用了一种优化开边界方法,沿着数值模型的开边界优化潮汐水位信息,目的是设法使数值解在动力约束的意义下接近观测值,获得研究区域的潮汐结果。边界值由指定优化问题的解来定,以提高模拟区域的潮汐精度,最优问题的解是基于通过开边界的能量通量的变化,处理开边界处的观测值与计算值之差的最小化。这里提供了辐射型边界条件,由Reid 和Bodine(本文简称为RB)推导,我们将采用的优化后的RB方法(称为ORB)是优化开边界的特殊情况。 本文对理想矩形海域( E- E, N- N, 分辨率 )进行了潮波模拟,有东部开边界,模式采用ECOM3D模式。对数据结果的误差分析采用,振幅平均偏差,平均绝对偏差,平均相对误差和均方根偏差四个值来衡量模拟结果的好坏程度。 需要优化入开边界的解析潮汐值本文采用的解析解由方国洪《海湾的潮汐与潮流》(1966年)方法提供,为验证本文所做的解析解和方文的一致,本文做了其第一个例子的关键值a,b,z,结果与其结果吻合的相当好。但略有差别,分析的可能原因是两法在具体迭代方案和计算机保留小数上有区别造成微小误差。另外,我们取m=20,得到更精确的数值,我们发现对前十项的各项参数值,取m=10,m=20各项参数略有改进。当然我们可以获得m更大的各项参数值。 同时为了检验解析解的正确性讨论m和l变化对边界值的影响,结果指出,增大m,m=20时,u的模最大在本身u1或u2的模的6%;m=100时,u的模最大在本身u1或u2的模的4%;m再增大,m=1000时,u的模最大在本身u1或u2的模的4%,改变不大。当l<1时, =0处u的模最大为2。当l=1时, =0处u的模最大为0.1,当l>1时,l越大,u的模越小,当l=10时,u的模最大为0.001,可以认为为0。 为检验该优化方法的应用情况,我们对理想矩形区域进行模拟,首先将本文所采用的优化开边界方法应用于30m的情况,在开边界优化入开边界得出模式解,所得模拟结果与解析解吻合得相当好,该模式解和解析解在整个区域上,振幅平均绝对偏差为9.9cm,相位平均绝对偏差只有4.0 ,均方根偏差只有13.3cm,说明该优化方法在潮波模型中有效。 为验证该优化方法在各种条件下的模拟结果情况,在下面我们做了三类敏感性试验: 第一类试验:为证明在开边界上使用优化方法相比于没有采用优化方法的模拟解更接近于解析解,我们来比较ORB条件与RB条件的优劣,我们模拟用了两个不同的摩擦系数,k分别为:0,0.00006。 结果显示,针对不同摩擦系数,显示在开边界上使用ORB条件的解比使用RB条件的解无论是振幅还是相位都有显著改善,两个试验均方根偏差优化程度分别为84.3%,83.7%。说明在开边界上使用优化方法相比于没有采用优化方法的模拟解更接近于解析解,大大提高了模拟水平。上述的两个试验得出, k=0.00006优化结果比k=0的好。 第二类试验,使用ORB条件确定优化开边界情况下,在东西边界加入出入流的情况,流考虑线性和非线性情况,结果显示,加入流的情况,潮汐模拟的效果降低不少,流为1Sv的情况要比5Sv的情况均方根偏差相差20cm,而不加流的情况只有0.2cm。线性流和非线性流情况两者模式解相差不大,振幅,相位各项指数都相近, 说明流的线性与否对结果影响不大。 第三类试验,不仅在开边界使用ORB条件,在模式内部也使用ORB条件,比较了内部优化和不优化情况与解析解的偏差。结果显示,选用不同的k,振幅都能得到很好的模拟,而相位相对较差。另外,在内部优化的情况下,考虑不同的k的模式解, 我们选用了与解析解相近的6个模式解的k,结果显示,不同的k,振幅都能得到很好的模拟,而相位较差。 总之,在开边界使用ORB条件比使用RB条件好,振幅相位都有大幅度改进,在加入出入流情况下,流的大小对模拟结果有影响,但线形流和非线性流差别不大。内部优化的结果显示,模式采用不同的k都能很好模拟解析解的振幅。
Resumo:
The vertical fluxes and vertical transferring forms of 18 rare elements were studied for the first time in the coral reef ecosystem of Nansha Islands, South China Sea, by deploying sediment traps, The results showed that the vertical transferring flux of most of the measured rare elements in Yongshu lagoon were higher than that in Zhubi lagoon. The vertical transferring forms of rare elements were mainly in the carbonate form, but Ta, As, Th mainly in the ion-exchange form, Ag in iron-manganese oxide form and Sb in the organic matter + sulphide form. None of the 18 rare elements was transferred mainly in the form of detritus silicate to sea floor. This proved that rare elements originating from the earth's crust were redistributed in sinking particulates after they were brought into ocean. The relation between the fluxes and surface seawater temperature (STT) was also studied. The sensitivity of rare elements to SST was in order: Rb>V>As>Ti>U>Zn>Sb>Hf>Ag>Cs.
Resumo:
Thirty-four palaemonid species from the northern area of South China Sea are reported in the present paper, including two new species, Paranchistus lini, new species, and Periclimenes chacei, new species, and eight other species are reported for the first time from South China Sea: Leander tenuicornis (Say, 1818), Leandrites stenopus Holthuis, 1950, Palaemon debilis Dana, 1852, Urocaridella antonbrurnii (Bruce, 1967), Kemponia platycheles (Holthuis, 1952), Paraclimenes franklini (Bruce, 1990b), Paranchistus spondylis Suzuki, 1971, Periclimenes hirsutus Bruce, 1971.
Resumo:
Influence of La3+ on the accumulation of trace elements (Se-75, Co-56, Rb-83, V-48, (95)mTc, and Ga-67) in chloroplasts of cucumber seedling leaves was studied by a radioactive multitracer technique. At the same time, chloroplast contents of different concentrations of La3+ treatment were calculated. It was observed that chloroplast contents peaked at 0.02 mM La3+ treatment and that the uptake and distribution of these trace elements in chloroplasts of cucumber seedling leaves are different under different La3+, treatments. With the increase of lanthanum concentrations from 0.002 to 2 mM, the uptake percentages of Se-75, Co-56, and Rb-83 presented an obvious increase and then sharply decreased in contrast to the nonlanthanum treatment, whereas there appeared a sharp decrease and then restored control level in the uptake of V-48. The other two trace elements, namely Tc-95m and Ga-67, were accumulated only in the presence of 0.02 mM La3+. The results indicate that lanthanum treatments to growing the cucumber lead to the change of trace element uptake in the chloroplasts of leaves, which suggest that lanthanum might influence the accumulation of trace elements in chloroplasts of cucumber seedling leaves by regulation of various ion transport mechanisms, thus affecting the photosystem of leaves.
Resumo:
The subduction zone is an important site of the fluid activity and recycling of chemical elements. The fluid characteristic of deep subduction zones is a top scientific problem attracting the petrologists, geochemists and tectonists. In this dissertation, the characteristics of fluid activity within a deep subduction zone have been explored on the basis of the studies on the petrography, mineral chemistry, fluid inclusions, geochemistry and metamorphic P–T conditions of the omphacite-bearing high-pressure veins and related hosts from the low-temperature/high-pressure metamorphic belt in southwestern Tianshan, China. Multiple high-pressure veins are exposed in host eclogites and blueschists. The veins are composed predominantly of omphacite, garnet, quartz, and other minerals. Some veins contain cm-sized rutiles. In general, the vein can be divided into three types, the ‘in situ dehydration’ vein, the ‘external transport’ vein and the ‘composite’ vein. The omphacites within the veins and related host rocks contain lots of two-phase or three-phase primary fluid inclusions. The final melting temperature (Tfm) of fluid inclusions varies mainly from -0.6 to -4.3 °C, the homogeneous temperature (Th) varies from 185 to 251 °C, the salinity varies from 1.1 to 6.9 wt.% NaCl equivalent and the density varies from 0.81 to 0.9 g/cm3. The fluids were released under the conditions of T = 520–580°C and P = 15–19 kbar at blueschist facies to eclogite facies transition. The fluids include not only Li, Be, LILE, La, Pb-enriched and HFSE- and HREE-depleted aqueous fluids but also HFSE (Ti-Nb-Ta)-rich aqueous fluids. The complex composed of aluminosilicate polymers and F was the catalyst which had caused the Ti-Nb-Ta to be dissolved into the fluids. During the transport of the LILE-rich and HFSE- and HREE-poor fluids, they can exchange some chemical elements with country rocks and leach some trace elements in some extent. The rutile could be precipitated from the HFSE (Ti-Nb-Ta)-rich aqueous fluids when CO2 was added into the fluids. The host rocks could obtain some elements, such as Ca, Cs, Rb, Ba and Th, from the external fluids. The fluids with complex composition had been released within the deep subduction zone (>50 km) in Early Carboniferous during the subduction of the South Tianshan Ocean under the Yili–Central Tianshan Plate. The results obtained in this dissertation have made new progress compared with the published data (e.g. Tatsumi, 1989; Becker et al., 1999; Scambelluri and Philippot, 2001; Manning, 2004; Hermann et al., 2006; Spandler and Hermann, 2006).
Resumo:
During the Devonian, a complicated carbonate platform-basin configuration was created through transtensional rifting in the context of opening of Devonian South China Sea; extensive bedded chert, commonly interbedded with tuffaceous beds, occurred in the narrow, elongate interplatform basins (or troughs) in South China, where they occurred earlier (Early Devonian) in southern Guangxi and later (early Late Devonian) in northern Guangxi-south central Hunan. In order to unravel the origin and distribution of the bedded chert successions, and their relationships to basement faulting activities during the opening of the Devonian South China Sea, studies of element (major, minor and REE) geochemistry and Rb-Sr, Sm-Nd isotopic systematics are carried out upon the chert deposits. These chert deposits commonly have high SiO2 contents and (average 94.01%) and low TFe2O3 (average 0.55%), together with other geochemical parameters, suggestive of both biogenic and hydrothermal origins. However, Fe/Ti ratio are high along the elongate interplatform basins(troughs) to the northwest along Wuxiangling-Zhaisha-Chengbu, and to the southeast along Xiaodong-Mugui-Xinpu, suggesting relatively intense hydrothermal activities there. They generally contain very low total REE contents (∑REE average 31.21ug/g) with mediate negative Ce anomalies (mean Ce/Ce*=0.83) and low Lan/Cen values (average 1.64), indicating an overall continental margin basin where they precipitated. The northward increases in Ce/Ce* values, particularly along the elongate troughs bounded both to the east and west of the Guangxi-Huanan rift basin, suggest a northward enhancement of terrigenous influences, thereby reflecting a gradual northward propagation of open marine setting. Generally low positive Eu anomalies in the chert, except for the apparently high Eu anomalies in the chert from Chengbu (Eu/Eu* up to 4.6), suggest mild hydrothermal venting activities in general, except for those at Chengbu. The initial 87Sr/86Sr (0) ratios of chert generally vary from 0.712000 to 0.73000 , suggesting influences both from terrigenous influx and seawater. The Nd isotopic model ages (tDM or t2DM) and initial εNd (0) values of chert vary mostly from 1.5 to 2.1 Ga, and from –16 to –21, respectively, implying that the silica sources were derived from the provenances of the Palaeoproterozoic crust relics at depth. The high εNd (0) values of chert (-0.22 to 14.7) in some localities, mostly along the elongate troughs, suggest that silica sources may have been derived from deeper-seated mantle, being channeled through the interplate boundary fault zones extending downwards to the mantle. At Wuxiangling, Nanning, chert occurs extensively from the Emsian through the Frasnian strata, both U/Th ratios and tDM ages of chert reached up to a maximum in the early Frasnian corresponding to the extensive development of chert in South China, pointing to a maximum extensional stage of Devonian South China basin, which is supported by the Ce/Ce* values as is opposed to the previous datasets as the coeval minimum values.
Resumo:
Over past ten years, a great development has been made in the Lu-Hf isotopic system with the advent of MC-ICP-MS. Based on a comprehensive review of available references in the related field, a novel analytical protocol of three exchange chromatographies after one mixed acid attacking geological samples was developed in this work, which not only avoids common multiple sample treatments for natural inhomegeneous samples, but also is useful for Rb-Sr, Sm-Nd and Lu-Hf isotopic system simultaneously, especially for the garnet- and apatite-bearing rocks for the Sm-Nd and Lu-Hf geochronology. An analytical procedure for the Lu and Hf concentration in geological samples determined by by ID-MC-ICP-MS was detailedly investigated. The Hf yield is > 90 % and total procedural blank is less than. 50 pg for Hf and 10 pg for Lu, respectively. The developed method was successfully applied to the determination of Lu and Hf concentrations for USGS geological materials. A one-column procedure for Hf purification in geological samples using common anion exchange chromatography and its isotopic analyses by MC-ICP-MS were also established. Multiple analyses of Standard Reference Materials demonstrate that this method was simple, time-saving, cheap and efficient, especially suitable for the Hf isotopic compositions of young samples. Finally, the measurements of Sr and Nd isotopic compositions using Neptune MC-ICP-MS were described briefly, which indicates that Neptune MC-ICP-MS can precisely measure Sr and Nd isotopic compositions as the TIMS does, even more efficient and less time-consuming than the TIMS method. The Hf isotopic characteristics of typical volcanic rocks (Cenozoic Changle-Linqu basalts, Mesozoic Fangcheng basalts, Mesozoic Jianguo basalts, Mesozoic Wulahada high-Mg andesite, Cenozoic Fanshi, Zuoquan and Xiyang-Pingding basalts of the Taihang Mountains, Paleozoic diamondiferous Menyin and Fuxian Kimblites) from the North China Craton were firstly studied in this work. Coupled with Nd isotopic compositions, it shows that the Hf isotopes could be a better tracer for mantle sources than the Nd isotopes. Individual kimberlite fields from both the Mengyin and Fuxian regions have quite uniform Hf isotopic compositions, similar to the situation for the Nd isotopes.
Resumo:
Aim in Rb-Sr-REE-Pb isotopic analysis of river material, a single-stage, highly efficient and rapid chemical separation method of Rb-Sr-REE-Pb has been established by a combination of the SR special resin and the RE resin. At the same time, Feasibility of high precision analysis on micro-size Nd samples,which were chemically separated by using the LN resin, were systematicly studied using the NdO+ technique in thermal ionization mass spectrometer (TIMS). Results show that high precision measurement of Nd isotopic ratios can be successfully achieved on micro-sample of 1 ng size lever, by systematic experiments on isobar interferences and optimizing separation and measurement conditions. This method will greatly extend the application prospect of the NdO+ technique. Sr-Nd-Pb isotopic composition of suspending particle material (SPM) and sediment and Sr isotopic composition of river water in the low reaches of the Yellow Rriver have been systematically analysed in this study. Results can indicate followings: (1) relative stable Sr isotopic ratios around 0.7112 of river water suggest great influcence from dissolution of carbonate component of loss material on Sr isotopic composition of river water; (2) Nd isotopic compositions of SPM and sediment of the Yellow river are is similar, mean εNd value of SPM around -11.5 and mean εNd value of sediment -12.7, slightly lower than that of SPM. Nd isotopic composition of the Yellow River material is simarlar to or slightly lower than loss material (-9.5); (3) evidence of Sr and Pb isotopic compositions of both SPM and sediment reveals a mixing trend of two endmembers. Sr isotopic ratios of SPM after leaching are significantly different that those without leaching, possibly suggesting strong alteration of river water. Pb isotopic ratios of SPM remain unchangable after leaching compared with unleached SPM; (4) Pb-contents of SPM are commonly higher than those of sediments, while Pb isotopic ratios of SPM are significantly lower. Pb isotopic composition of the Yellow River is relatively constant, which can be a useful provenance indicator between the Changjiang and Yellow Rivers.
Resumo:
Bayan Obo REE-Nb-Fe ore deposit is the largest REE deposit in the world. Owing to its unique type and tremendous economic value, this deposit has widely attracted interests from geological researchers and vast amount of scientific data have been accumulated. However, its genesis, especially ore-forming age and REE sources, have been under dispute for a long time. On the basis of previous research works, this paper mainly conducts studies on the Early Paleozoic ore-forming event in the Bayan Obo deposit. The following results and conclusions can be suggested: Sm-Nd isotopic analytical results of bastnaesite, beloeilite, albite and fluorite samples from a coarse-crystalline ore lode present an isochron age of 436±35Ma. Besides, Rb-Sr isotope dating of the coarse-crystalline biotite lode that intruded into banded ores gives an isochron age of 459±39Ma. The two ages verify the exist of Early Paleozoic ore-forming event at Bayan Obo, which characterized by extensive netted mineralization of REE fluorocarbonates, aeschynite and monazite, accompanied by widely fluorite-riebeckite-aegirine-apatite alteration. Sr-Nd isotope composition of vein minerals is located between EMI and ancient lower crust component in the ISr(t)-εNd(t) correlation diagram, indicating that there is a crustal contamination during veined mineralization. A large area late Paleozoic granitoids are distributed in the southeast region of east open pit of the mine. The granitoids intruded directly into the ore-bearing dolomite, and produced intense skarnization. Moreover, at 650-660m of the drill core on 22 line and 1598m level flat in the south of East Open Pit, we firstly found skarnization rocks. Single grain and low background Rb-Sr isochrone dating on phlogopite in skarn gives 309±12Ma. Considering the intruded contacting relationship, the late Paleozoic granitoids, already extended to the under part of REE ore bodies, must be posterior to the latest intense REE mineralization, and is only a destructive tectonic and magmatic activity. Fluid inclusion types of fluorite in the Bayan Obo deposit consist of multiphase daughter mineral-bearing inclusion, two or three phase CO2-bearing inclusion and two phase aqueous inclusion. Petrography, laser Raman analysis and microthermometry study indicate that the fluids involving in REE-Nb-Fe mineralization at Bayan Obo might be mainly of H2O-CO2-NaCl-(F-REE) system. The presence of REE-carbonate as a daughter mineral in fluid inclusions shows that the original ore-forming fluids are rich in REE elements.
Resumo:
In this paper, the Xiaodonggou porphyry molybdenum deposit located in the Xarmoron molybdenum metallogenic belt is chose as the research area. We have analyzed the petrology of the Xiaodonggou pluton in detail and made chemical analysis of the major and trace elements, Rb-Sr and Sm-Nd isotope, common lead isotope and SHRIMP zircon U-Pb dating et al; in the other hand, we use the molybdenite to make common lead analysis and Re-Os isotopic dating. The Xiaodonggou pluton is rich in silicon, potass, zirconium, and low in REE. In addition, it has no minus Eu abnormity and show a isotopic composition high in εNd(t) and low in Sri, indicating its magma origining from the melting of juvenile thicken lower crust. In the meanwhile, it contained the features of high temperature, quick melting, quick segregation and quick emplacement. The common lead analysis of the pluton orthoclase and molybdenite show that the former transfer from orogen to mantle and the latter come from mantle, which is consistent to the molybdenite sulfur isotopic and quartz oxygen isotopic composition, demonstrating that the rock and ore-forming materials of deposit having different sources, magma from the lower crust mixing with mantle fluid. In plus, we use the physical experiments results of the water-magma reaction to explain the interaction of magma and mantle fluid. In the deep crust, these two systems uplifted in a immiscible state; when they reached low depth, the stream film between fluid-magma collapsed, and the magma was broken into small agglomerates by the fluid, then they mixed thoroughly. The SHRIMP zircon U-Pb dating gave a result of 142±2Ma and the molybdenite Re-Os dating result is 138.1±2.8Ma, corresponding to the big tectonic transition period of 140Ma, when the major stress field changing from south and north to west and east. At this time, the Da Hinggan ling ranges area was under an extensive background, underplating proceeded and mantle materials could add into the magmas forming in the lower crust. So, from the above analysis, we propose the following model for the Xiaodonggou porphyry molybdenum deposit: in the early Cretaceous period, the Da Hinggan ling ranges area was under a extensive background, the adding of mantle fluid containing ore materials into heated lower crust made it melting to produce magmas. Following more mantle fluid got into the magma room and urged the magma to segregate from the source quickly. The fluid and magma uplifted together, when they arrived at shallow depth, the fluid-magma became unstable and the latter was broken into many small agglomerates with fluid connecting them in the interspaces. Because of the H+, K+ and various elements existing in the fluid, it would reacted with the magma and the rock through alteration and ore minerals crystallized out, forming the Xiaodonggou porphyry deposit with disseminated mineralization phenomenon.
Resumo:
The recent years research indicated that middle-south section of Da Hinggan Mountains metallogenic belt has two periods(Hercynian and Yanshanian) characteristics of metallogenesis, as well as the most of ore deposits in the area closely relate to Permian strata. Longtoushan ore deposit discovered in 2004 is an Ag-Pb-Zn polymetallic ore deposit born in Permian and located in the east hillside of the metallogenic belt, which has considerable resources potentials. It has important research value for its good metallogenic location and blank research history. Base on the detail field geology studies, the geology characteristics of "two stages and three kinds of metallogensis" has established. According to further work through geochemistry research including trace element, REE, S, Pb and Sr isotope, as well as petrography, microtemperature measurement, Laser Raman analysis and thermodynamics calculation of fluid inclusion, origin and characteristic of the ore-forming material and fluid has been discussed. And a new technology of single pellet Rb-Sr isochrones has been tried for dating its born time. Bae on above work, study of ore deposit comparison has been carried out, and metallogesis controlling factor and geological prospecting symbol have been summarized. Finally, metallogenic model and prospecting model have been established. According to above, the next step work direction has been proposed. Main achievement of the paper are listed as follow: 1.Longtoushan ore deposit has experienced two metallogenic periods including hot-water sedimentation period and hydrothermal reformation period. There are three kinds of metallizing phase: bedded(or near-bedded) phase, vein-shaped phase and pipe-shaped phase. The mian metallogenic period is hot-water sedimentation period. 2.Ore deposit geochemistry research indicated that the metal sulfides have charcateristic of hot-water sedimentation metallogensis, but generally suffered later hydrothermal transformation. The barite mineral isotope content is homogenous, showing the seabed hot-water sedimentation origin characteristic. Wall rock, such as tuff is one of metallogenic material origins. Both of Pb model age and Rb-Sr isochrone research older age value than that of strata, possibly for been influenced by hydrothermal transformation, and interfusion of ancient basis material. 3.There are two kinds of main metallogenic fluid inclusion in barite of the Longtoushan ore deposit, which are rich gas phase( C type) and liquid phase (D type). Their size is 2~7um, and principal components is H2O. Both kinds of fluid inclusion have freezing point temperature -7.1~-2.4℃ and -5.5~-0.3℃, salinity 4.0~10.6wt% and 0.5~8.5wt%, homogeneous temperature 176.8~361.6℃ and 101.4~279.9℃, which peak value around 270℃ and 170℃, respectively. Density of the ore-forming fluid is 0.73~0.97g/cm3, and metallogenic pressure is 62.3×105~377.9×105Pa. Above characteristic of the fluid inclusion are well geared to that of ore deposit originated in seabed hot-water sedimentation. 4.Through the comparison research, that Longtoushan ore deposit has main characteristic of hot-water sedimentation ore deposit has been indicated. Ore-forming control factor and prospecting symbol of it has been summarized, as well as metallogenic model and prospecting model. Next step work direction about prospecting has also been proposed finally.
Resumo:
The most prominent tectonic and environmental events during the Cenozoic in Asia are the uplift of the Himalaya-Tibetan plateau, aridification in the Asian interior, and onset of the Asian monsoons. These caused more humid conditions in southeastern China and the formation of inland deserts in northwestern China. The 22 Ma eolian deposits in northern China provide an excellent terrestrial record relative to the above environmental events. Up to date, many studies have focused on the geochemical characters of the late Mio-Pleistocene eolian deposits, however, the geochemical characteristics of the Miocene loess and soils is still much less known. In this study, the elemental and Sr-Nd isotopic compositions of the eolian deposits from the Qinan (from 22.0 to 6.2 Ma) and the Xifeng (from 3.5 Ma until now) loess-soil sections were analyzed to examine the grain size effects on the element concentrations and the implications about the dust origin and climate. The main results are as follows: 1. The contents of Si, Na, Zr and Sr are higher in the coarser fractions while Ti and Nb have the highest contents in the 2-8 μm fractions. Al, Fe, Mg, K, Mn, Rb, Cu, Ga, Zn, V, Cr, Ni, LOI have clear relationships with grain-size, more abundant in the fine fraction while non significant relationship is observed for Y. Based on these features, we suggest that K2O/Al2O3 ratio can be used to address the dust provenance, and that VR (Vogt ratio = (Al2O3+K2O)/(MgO+CaO+Na2O)) can be used as a chemical weathering proxy for the Miocene eolian deposits because of their relative independence on the grain size. Meanwhile, SiO2/Al2O3 molar ratio is a best geochemical indicator of original eolian grain size, as suggested in earlier studies. 2. Analyses on the Sr and Nd isotope composition of the last glacial loess samples (L1) and comparison with the data from the deserts in northern China suggest that that Taklimakan desert is unlikely to be the main source region of the eolian dust. In contrast, these data suggest greater contributions of the Tengger, Badain Jaran and Qaidam deserts to the eolian dust during the last glacial cycle. Since the geochemical compositions (major, trace, REE and Sr, Nd isotope) of loess samples for the past 22 Ma are broadly similar with the samples from L1, these data trend to suggest relatively stable and insignificant changes of dust sources over the past 22 Ma. 3. Chemical weathering is stronger for Miocene paleosol samples than for the Plio-Pleistocene ones, showing warmer/more humid climatic conditions with a stronger summer monsoon in the Miocene. However, chemical weathering is typical of Ca-Na removal stage, suggesting a climate range from semiarid to subhumid conditions. These support the notion about the formation of a semi-arid to semi-humid monsoonal regime by the early Miocene, as is consistent with earlier studies.
Resumo:
Hersai porphyry copper deposit(PCD) of eastern junggar, newly discovered copper deposit, is located at the eastern segment of the Xiemisitai-Kulankazigan-Zhifang-Qiongheba Paleozoic island arc, Eastern Junggar. The Hersai PCD is developed in a intrusive complex, characterized by intensive and multiform hydrothermal alteration, including potassic alteration, silification, chloritization,sericitization,kaolinitization and carbonatization. Granodiorite, grandiorite porphyry, granite and concealed explosion breccia are hosts of the ore bodies containing veinlet and disseminated ore. Ore-bearing granite (ZK107-1-9), granodiorite (ZK107-1-9) and Ore-barren granodiorite (HES2-1) are selected to date zircon U-Pb age by SHRIMP method, and have an age of 429.4±6.4Ma ,413.0±3.4Ma and 411.1±4.8Ma, respectively, showing that they were emplaced from Late Silurian to Early Devonian. In addition, sample ZK107-1-9 has some hydrothermal zircons with a weighted mean 206Pb/238U age of 404.9±3.7Ma which is interpreted to be related to the granodiorite porphyry. Re-Os dating of five molybdenite samples yielded a weighted average model age of 408.0±2.9Ma, indicating the metallogenic epoch of the Hersai PCD. The ore-forming age is close to the petrogenic time of garnodiorite (411-413Ma), this suggests the ore-forming porphyry is most possiblely granodiorite porphyry. Systematic major - trace elements and Rb-Sr-Sm-Nd-Pb-Hf isotopic characteristics were studied. Analysis results show that these intrusives have some interesting and special characteristics, as following:1) containing both calc-alkaline rocks and high potassium calc-alkaline rocks ; 2) have some characteristics of adakite, but not totally, such as much lower La/Yb ratios and no Eu anomaly or just faint Eu anomaly; 3) have an initial 87Sr/86Sr ratios(0.703852-0.704565) similar to that of BSE, positive εNd(t) values between 6.1 and 7.4, the initial 206Pb/204Pb values (17.576-17.912), 207Pb/204Pb values (15.400-15.453) , 208Pb/204Pb values (37.252-37.466) , and high εHf(t) values (10.2-15.4) close to the value of depleted mantle. These geochemical features suggest that these igneous rocks in the Hersai area not only have some characteristics of island arc, but also some characteristics that only appear in the continental margin arc. It is suggested that Hersai PCD is formed in the subduction setting by the partial melting of young crust. These works and advancements mentioned in the paper are helpful to understand the deposit geology, geochemistry and metallogenesis of Hersai PCD. It is also significant to understand mineralization and tectonic setting in the Qiongheba area.
Resumo:
Central Xiemisitai is located on the northwest edge of the Junggar Basin, bounded on the north by Sawuer Mountain, and southward Junggar Basin. Geotectonically, it is within the Chengjisi-Ximisitai-Santanghu island arc of Late Paleozoic, between Siberian and Junggar plates. The volcanics in this area mainly consist of acidic volcanic lava, rock assemblage of esite, dacite, and rhyolite, and the transitional phase is comparatively developed. Besides, Si2O of volcanics here covers a large range of 53.91-79.28t %, K2O of 1.71-6.94t%, and Na2O of 2.29-5.45t%, which is a set of metaluminous- peraluminous high K calc-alkaline to calc alkaline mid-acidic volcanic series. In addition, the volcanics are potassic to high-potassic assemblage, with slight shoshonite in. The REE curve of volcanics in central Xiemisitai is rightward and smooth, inclining to LREE enrichment, which reveals the characteristics of island-arc volcanics. Through the lithology changing from neutral to acidic, the negative anomaly of Eu is increasing. The volcanics here deplete HFSE such as Nb, Ti, P, etc., but relatively rich in LILE like Rb, K, Th, etc., possessing geochemistry characteristics of arc volcanics, which means that the lava source region is watery, under the meta-somatic contamination of subducted components. Moreover, high Ba and Sr show volcanics in epicontinental arc environment, and their contemporaneous granitoid rocks are also marked with the characteristics of volcanic arc granite. In central Xiemisitai, the volcanics zircon age of volcanic rhyolite is 422.5Ma± 1.9Ma, mid-late Silurian. Only one sample zircon has been measured for the present, not very convincing, so volcanics here might not come from Devonian volcanism. Consequently, further confirming the volcanic age will play a key role in the research on the beginning of volcanism in Xiemisitai area and even North Xinjiang. This area includes three copper mineralization types: a) from andesite fracture; b) from rhyolite fracture broken zone, with the copper mineralization distributed by veins along the fissure; and c) from quartz veins. The mineralization of earth surface in S24 ore spot is intensive, and the primary geochemistry reconnaissance anomaly is fairly good. According to display data, the maximum content of Cu is as high as 0.9% and as low as 0.05%. Also, ore-control fracture structure is having a considerable scale in the strike of fracture both horizontally and vertically downwards, and the result of the geophysics stratagem EH-4 system reveals obvious low-resistivity anomaly. As a result, we believe that the S24 plot is expected to be a volcanic copper deposit target area.
Resumo:
Daolangheduge copper polymetallic deposit is located on east edge of Ondor Sum-Bainaimiao metallogenic belt, which is a prospective area of porphyry copper deposit, in Xianghuangqi of central Inner Mongolia. Geotectonically, it occurred in the continental margin accretion belt along the north margin of North China Plate, south of the suture zone between North China Plate and Siberian Plate. The intrusive rocks in this area mainly consist of intermediate-acid magmatic rocks, and the quartz veins, tourmaline veins and the transitional phase are comparatively developed. According to our research, the ore-bearing rock body is mainly quartz diorite while the surrounding rock is mainly biotite granite. Besides, the wall rock alteration are mainly propylitization, pyritization and silicification, which consist of epidotization, actinolitization, chloritzation and so on. The metallic minerals are mainly chalcopyrite and pyrite. In addition, the primary ore is mainly of quartz-chalcopyrite-pyrite type. Above all, Daolangheduge copper polymetallic deposit is suggested to be categorized in the porphyry copper type. With isotopic dating and geochemical research on quartz diorite of ore-bearing rock body, the zircon LA-ICP-MS U-Pb dating of two samples yields an age of 266±2 Ma, falling into the range of late Permian Epoch. It is the first accurate age data in Xianghuangqi area, so it should play a key role in the research of deposit and magmatic rocks in this area. With the major elements and trace elements analysis of 14 samples, the quartz diorite should be among the calc-alkaline series, the geochemical characteristics show higher large-ion lithophile elements of Rb, Sr and LREE, low high-field strength elements of Nb, Ta and high transition elements of Cu, Cr . Also, the REE patterns have negative Eu anomalies. With the same analysis of 4 sample for the biotite granite, the geochemical characteristics show higher Rb, Th,, Zr, Hf and LREE, low Nb, Sm and HREE and Eu has no anomaly. It should be among the calc-alkaline series, over aluminum quality and has characteristics of Adakites. According to isotopic dating and geochemical characteristics of ore-bearing rock body, it is suggested that its materials mainly derived from upper mantle that had fractional crystallization and its magma source region may be affected by fluid metasomatism of paleo-asian ocean. It should be an extensional process of post-orogeny according to regional tectonic evolution. Consequently, because of the decrease of temperature and pressure, the ore forming fluid was raised to surface and mineralized accompanied by magmatic activity which might occur in south of the suture zone. By geological survey, further geophysical and geochemical work is needed. In this area, we have accomplished high precision magnetic prospecting, high density electrical survey, gravity prospecting, soil geochemical prospecting, X-ray fluorescence analyzer prospecting and so on. According to geophysical and geochemical abnormal and surface occurrence, 11 drills are arranged to verification. The type of ores are mainly quartz-chalcopyrite-pyrite ores within 3 drills by drill core logging. Although the grade as well as the scale of already-found Cu deposits are insufficient for industrial exploitation, the mineralization prospect in this region is supposed to be great and the potential in mineral exploration at depth is excellent.